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Foundations for Neuro-Symbolic AI
From van Harmelen (2022):1

“What are the possible interactions between knowledge and
learning? Can reasoning be used as a symbolic prior for learn-
ing . . . Can symbolic constraints be enforced on data-driven
systems to make them safer? Or less biased? Or can, vice
versa, learning be used to yield symbolic knowledge? And if
so, how to manage the inherent uncertainty that comes with
such learned knowledge. . .”

“. . . neuro-symbolic systems currently lack a theory that even
begins to ask these questions, let alone answer them. All too
often, new conference papers and ArXiv manuscripts simply
propose a new neuro-symbolic architecture, or a new algorithm,
without even discussing which of the above questions (or any
others, for that matter) they aim to address.”

1F. Harmelen. “Preface: The 3rd AI Wave Is Coming, and It Needs a Theory”. In: Neuro-Symbolic Artificial
Intelligence. Ed. by P. Hitzler and M. Sarker. IOS Press BV, 2022.
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Neural Network Semantics

N = ⟨N,E,W,A, η, [[·]]⟩
PropN (S) : P(N) → P(N)

PropN (S) = the set of all nodes that are
eventually activated on input S

n

S
Prop(S)

N |= φ ⇒ ψ iff PropN ([[φ]]) ⊇ [[ψ]]
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A Brief Timeline
1991. Balkenius & Gärdenfors realize that Prop behaves

like a nonmonotonic conditionals
2001. Leitgeb proves this, via a completeness theorem
2003. Leitgeb extends completeness to various neural

network architectures
2022. Giordano, Gliozzi, & Theseider Dupré prove

soundness for fuzzy activation functions
2022. Schultz Kisby, Blanco, & Moss prove soundness

for a basic learning policy (Hebbian learning)
2022. Odense & d’Avila Garcez start writing a survey of

approaches like this (they call this “semantic
encoding”)

2024. Our new result: Completeness for Hebbian
Learning! (Accepted paper at AAAI 2024)
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Soundness & Completeness

• Leitgeb (2001)2 showed that the neural semantics for
φ ⇒ ψ are completely axiomatized by:

Refl. φ ⇒ φ
LLE. φ↔ψ φ⇒ρ

ψ⇒ρ

Weak. φ→ψ ρ⇒φ
ρ⇒ψ

CC. φ∧ψ⇒ρ φ⇒ψ
φ⇒ρ

CM. φ⇒ψ φ⇒ρ
φ∧ψ⇒ρ

Loop. φ0⇒φ1 ...φk−1⇒φk φk⇒φ0
φi⇒φj

• This is classified as a “Loop-Cumulative” conditional by
Kraus, Lehmann, and Magidor (1990)3

2H. Leitgeb. “Nonmonotonic reasoning by inhibition nets”. In: Artificial Intelligence 128.1-2 (2001).
3S. Kraus, D. Lehmann, and M. Magidor. “Nonmonotonic reasoning, preferential models and cumulative logics”.

In: Artificial intelligence 44.1-2 (1990).
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Learning Wrecks the Model!

[See board]
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Hebbian Learning

Neurons that fire together wire together

S

Prop(S)
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Iterated Hebbian Learning

Neurons that fire together wire together

S

Prop(S)

Repeat this update until a fixed point!
i.e. until the weights are “maximally high”
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Language and Semantics

p | ¬φ | φ ∧ ψ | Kφ | Tφ | [φ]ψ
We define duals ⟨K⟩, ⟨T⟩ as usual.

[[p]] ∈ P(N)
[[¬φ]] = [[φ]]∁
[[φ ∧ ψ]] = [[φ]] ∩ [[ψ]]
[[⟨K⟩φ]] = Reach([[φ]])
[[⟨T⟩φ]] = Prop([[φ]])
[[[φ]ψ]]N = [[ψ]]Hebb(N ,[[φ]])

We also define N |= φ iff [[φ]]N = N

Note that we can express
Leitgeb’s φ ⇒ ψ as Tφ → ψ
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Soundness for K and T
• First, Reach is a standard monotonic closure operator:

Nec. From ⊢ φ we can infer ⊢ Kφ
Dual. ⟨K⟩φ ↔ ¬K¬φ
Refl. Kφ → φ

Trans. Kφ → KKφ
Distr. K(φ → ψ) ↔ (Kφ → Kψ)

• Prop is non-monotonic, but is “Loop-Cumulative”:
Nec. From ⊢ φ we can infer ⊢ Tφ

Dual. ⟨T⟩φ ↔ ¬T¬φ
Refl. Tφ → φ

Trans. Tφ → TTφ
Cumulative. (φ → ψ) ∧ (Tψ → φ) → (Tφ → ψ)

Loop. (Tφ0 → φ1)∧· · ·∧ (Tφk → φ0) → (Tφ0 → φk)
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A Complete Description of Hebb∗

[See board]
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Reduction Axioms for [φ]

Theorem. The following axioms are sound:
[φ]p ↔ p for propositions p
[φ]¬ψ ↔ ¬[φ]ψ
[φ](ψ ∧ ρ) ↔ [φ]ψ ∧ [φ]ρ
[φ]Kψ ↔ K[φ]ψ
[φ]Tψ ↔ T([φ]ψ ∧ (Tφ ∨ K(Tφ ∨ T[φ]ψ)))
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Completeness & Model Building

Theorem. Assuming model building for the base language:
For all consistent Γ ⊆ L there is a net N such that N |= Γ.

Theorem. Assuming completeness for the base language:
[φ] is completely axiomatized by the reduction axioms from
before.
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Consequences for AI Alignment

[See board]
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Conjecture & Speculation

[See board]
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Future Work
• Completeness for fuzzy nets
• Stabilized Hebbian Learning
• Single-step update
• What kind of preference upgrade is backpropagation?

Contact:
Caleb Schultz Kisby
cckisby@iu.edu
https://ais-climber.github.io/
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