
WEAK FACTORIZATIONS, FRACTIONS AND
HOMOTOPIES

A. KURZ AND J. ROSICKÝ∗

Abstract. We show that the homotopy category can be assigned
to any category equipped with a weak factorization system. A clas-
sical example of this construction is the stable category of modules.
We discuss a connection with the open map approach to bisimula-
tions proposed by Joyal, Nielsen and Winskel.

1. Introduction

Weak factorization systems originated in homotopy theory (see [Q],
[Bo], [Be] and [AHRT]). Having a weak factorization system (L,R) in
a category K, we can formally invert the morphisms from R and form
the category of fractions K[R−1]. From the point of view of homotopy
theory, we invert too few morphisms: only trivial fibrations and not all
weak equivalences. Our aim is to show that this procedure is important
in many situations.

For instance, the class Mono of all monomorphisms form a left part of
the weak factorization system (Mono,R) in a category R-Mod of (left)
modules over a ring R. Then R-Mod [R−1] is the usual stable category
of modules. Or, in the open map approach to bisimulations suggested
in [JNW], one considers a weak factorization system (L,OP), where
OP is the class of P-open morphisms w.r.t. a given full subcategory P
of path objects. Then two objects K and L are P-bisimilar iff there is
a span

K M
foo g //L

of P-open morphisms. Any two P-bisimilar objects are isomorphic
in the fraction category K[O−1

P ] but, in general, the fraction category
makes more objects isomorphic than just P-bisimilar ones.
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Any weak factorization system (L,R) in a category K with finite
coproducts yields a cylinder object in K and thus a relation ∼ of homo-
topy between morphisms of K. We will show that any two homotopic
morphisms have the same image in the fraction category. Moreover, if
K has finite coproducts and any morphism in R is a split epimorphism
then the categories K[R−1] and K/ ∼ are equivalent.

2. Weak factorization systems

Definition 2.1. Let K be a category and f : A → B, g : C → D
morphisms such that in each commutative square

A
u //

f

��

C

g

��
B v

// D

there is a diagonal d : B → C with d ·f = u and g ·d = v. Then we say
that g has the right lifting property w.r.t. f and f has the left lifting
property w.r.t. g.

For a class H of morphisms of K we put

H� = {g|g has the right lifting property w.r.t. each f ∈ H} and
�H = {f |f has the left lifting property w.r.t. each g ∈ H}.

Definition 2.2. ([Be]) A weak factorization system (L,R) in a cate-
gory K consists of two classes L and R of morphisms of K such that

(1) R = L�, L = �R and
(2) any morphism h of K has a factorization h = g · f with f ∈ L

and g ∈ R.

The category of fractions K[S−1], where K is a category and S a
class of morphisms in K, was introduced in [GZ] (see [Bor], [KP]). This
category has the same objects as K and is equipped with a functor
P : K → K[S−1] sending any morphism from S to an isomorphism.
Moreover, for every functor F : K → X sending any morphism from
S to an isomorphism, there is a unique functor F : K[S−1] → X such
that F = F ·P . It may happen that the category K[S−1] is not locally
small, i.e., that one can have a proper class of morphisms between two
given objects in K[S−1].

Observation 2.3. K[S−1] is a quotient of the category of zig-zags

K
f1 //X1 X2

f2oo // . . . L
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where all morphisms going backwards are in S (see [KP], II.2). If
K has finite limits and S contains all isomorphisms, is closed under
compositions and stable under pullbacks then these zig-zags can be
reduced to spans

K X
soo f //L

with s ∈ S. In fact, a zig-zag is reduced to a span by means of pullbacks
as follows:

K
f1 // X1 X2

f2oo // . . . L

X1

f2

__@@@@@@@@@@@ f1

>>}}}}}}}}}}}

The equivalence relation on spans giving the category of fractions is
easy to describe if S also has the property: if t · f = t · g with t ∈ S
then f · s = g · s for some s ∈ S. One then says that S admits a right
calculus of fractions (see [Bor]).

Let (L,R) be a weak factorization system in a category K having
finite limits. Then R contains all isomorphisms, is closed under com-
positions and stable under pullbacks (see [AHRT]). Hence the fraction
category K[R−1] is a quotient category of the category of spans. But
R rarely admits a right calculus of fractions.

Example 2.4. Let (L,R) be a factorization system in a category K
having finite limits. This means that (L,R) is defined by means of
a unique diagonalization property, i.e., that d in 2.1 is unique. Then
(L,R) is a weak factorization system (see 14.6 (3) in [AHS]). We show
that R admits a right calculus of fractions. Consider

K
h1 //

h2

//L
t //M

such that t ·h1 = t ·h2 and t ∈ R. It suffices to show that the equalizer
e of h1 and h2 belongs to R. This means that we have to show that e
has the unique diagonalization property w.r.t. each morphism f ∈ L.
Consider a commutative square

X
u //

f

��

N

e

��
Y v

// K
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with f ∈ S. Since

X
h1eu //

f

��

L

t

��
Y

th1v
//

h1v

>>}}}}}}}}}}}}}}}
h2v

>>}}}}}}}}}}}}}}}
M

commutes, the unique diagonalization property yields that h1·v = h2·v.
Thus v = w · e for some w : Y → N . Since e is a monomorphism, w is
the unique diagonal in the starting square.

In the case of the factorization system (Iso(K), Mor(K)), the fraction
category K[Mor(K)−1] is the set of connected components of K. Here,
Iso(K) consists of isomorphisms of K and Mor(K) of all morphisms of
K.

Observation 2.5. The class

S = {f | P (f) is an isomorphism}

is called the saturation of S. It is easy to see that S is closed under
retracts in the arrow category K→ and has the 2-out-of-3 property, i.e.,
with any two of f , g, g · f belonging to S also the third morphism
belongs to S.

The following definition is motivated by [JNW].

Definition 2.6. Let (L,R) be a weak factorization system in a cate-
gory K. Two objects K and L are called bisimilar if there is a span

K
f←−− X

g−−→ L

with f, g ∈ R.

Observation 2.7. Any two bisimilar objects are clearly isomorphic in
the fraction category K[R−1]. If K has finite limits then bisimilarity is
an equivalence relation. We will see later that (see 3.6), even in this
case, two objects K, L may be isomorphic in K[R−1] without being
bisimilar.

Observation 2.8. Let (L,R) be a weak factorization system in a cat-
egory K having an initial object 0. Then the following two conditions
are equivalent:

(1) any morphism from R is a split epimorphism,
(2) any morphism 0→ K belongs to L.
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Indeed, (1) ⇒ (2) because a diagonal in a square

0 //

��

L

f

��
K v

// M

is t · v where t splits f ∈ R. Conversely, (2) ⇒ (1) because a diagonal
in a square

0 //

��

L

f

��
K

idK

// K

splits f ∈ R.

Observation 2.9. Let K be a locally presentable category (cf. [AR])
and C a set of morphisms in K. Then

(
�(C�), C�

)
is a weak factor-

ization system and �(C�) is the smallest class L containing C which
is

(a) closed under retracts in K→,
(b) closed under compositions and contains all isomorphisms,
(c) stable under pushouts,
(d) closed under transfinite compositions, i.e., given a smooth chain

of morphisms (fij : Ki → Kj)i<j<λ from L (i.e., λ is a limit
ordinal, fjk · fij = fik for i < j < k and fij : Ki → Kj is
a colimit cocone for any limit ordinal j < λ), then a colimit
cocone fi : Ki → K has f0 ∈ L.

(see [Be] or [AHRT]). Even, �(C�) consists of retracts of transfinite
compositions of pushouts of morphisms from C.

3. Homotopies

Definition 3.1. Let K be a category with finite coproducts equipped
with a weak factorization system (L,R). For an object K of K, we get
a cylinder object K by a factorization of the codiagonal

∇ : K + K
cK−−−−−→ K

sK−−−−−→ K

with cK ∈ L and sK ∈ R. We denote by

c1
K = cK · i1 and c2

K = cK · i2
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the compositions of cK with the coproduct injections

K
i1−−−−→ K + K

i2←−−−− K .

There is a well-known way of getting homotopy from cylinder objects
(see [KP]). Having two morphisms f, g : K → L, we say that f and g
are homotopic and write f ∼ g if there is a morphism h : K → L such
that the following diagram commutes

K + K
(f,g)

//

cK

""F
FF

FF
FF

FF
FF

FF
L

K

h

??�����������

Here, (f, g)·i1 = f and (f, g)·i2 = g. The homotopy relation∼ is clearly
reflexive and symmetric. But, in general, the homotopy relation is not
transitive. On the other hand, ∼ is compatible with the composition.

Lemma 3.2. Let K be a category with finite coproducts equipped with
a weak factorization system (L,R). Let f, g : K → L, u : L→M and
v : N → K be in K and f ∼ g. Then u · f ∼ u · g and f · v ∼ g · v.

Proof. Let h : K → L make f and g homotopic. Then u ·h makes u · f
and u · g homotopic. Using a lifting property, there is a morphism t
such that both squares in the following diagram are commutative

N + N
v+v //

cN

��

K + K

cK

��

N
t //

sN

��

K

sK

��
N v

// K

Then h · t makes f · v and g · v homotopic. �

Observation 3.3. The homotopy relation does not depend on a choice
of a cylinder object. The reason is that, for two cylinder objects

∇ : K + K
cK−−−−−→ K

sK−−−−−→ K

and

∇ : K + K
cK−−−−−→ K

sK−−−→ K ,
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we always have a diagonal t in the square

K + K
cK //

cK

��

K

sK

��

K

t

=={{{{{{{{{{{{{{{{{{{{

sK

// K

Let K be a Quillen model category (see [H]) and let L consist of
cofibrations and R of trivial fibrations. Then (L,R) is a weak factor-
ization system and any f , g homotopic in our sense are left homotopic
in the standard sense. But the converse does not hold.

Any weak factorization system (L,R) gives rise to a Quillen model
category if we take all morphisms of K as weak equivalences ([AHRT]
3.7). Then any two morphisms f, g : K → L are left homotopic because
we have a model category cylinder

∇ : K + K
id−−−−→ K + K

∇−−−−→ K

(because ∇ is a weak equivalence).
Let K be a category with finite coproducts equipped with a weak

factorization system (L,R). We get the quotient category

Q : K → K/∼ .

Following 3.2, Q(f) = Q(g) iff f and g are in the transitive closure of
the homotopy relation ∼, i.e., iff there are f1, . . . , fn such that

f ∼ f1 ∼ · · · ∼ fn ∼ g .

Lemma 3.4. Let K be a category with finite coproducts equipped with
a weak factorization system (L,R). Then P (f) = P (g) for any mor-
phisms f ∼ g.

Proof. We have

P (sK · c1
K) = P (∇ · i1) = P (∇ · i2) = P (sK · c2

K) .

Since P (sK) is an isomorphism, we have P (c1
K) = P (c2

K). Thus P (f) =
P (g) for f ∼ g. �
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We therefore have a unique functor T such that

K P //

Q
!!B

BB
BB

BB
BB

BB
B K[R−1]

K/ ∼

T

;;vvvvvvvvvvvvv

commutes. In general, one cannot expect that T is an equivalence.

Example 3.5. Let K have finite coproducts and consider the factoriza-
tion system

(
Iso(K), Mor(K)

)
. Then a cylinder object for K is K + K

and thus any two parallel morphisms are homotopic. Hence Q is the
posetal reflection of K. On the other hand, P is (up to equivalence),
the projection of K to the set of connected components of K.

If (L,R) is a weak factorization system and ∼ the associated homo-
topy then a morphism f : K → L is called a homotopy equivalence if
there is g : L → K with g · f ∼ idK and f · g ∼ idL. Every homotopy
equivalence is sent by Q and, following 3.4, by P as well, to an isomor-
phism. Since ∼ is not transitive, Q inverts more morphisms than just
homotopy equivalences. In fact, Q(f) is an isomorphism iff there is g
such that both (g · f, idK) and (f · g, idL) are in the transitive closure
of ∼.

The following gives an example of a homotopy relation that is not
transitive and of homotopy equivalent objects that are not bisimilar.

Example 3.6. Let SetX be the category of multigraphs with loops,
i.e., X is the category

E

r1 //

r2

// V
voo

where r1 ·v = r2 ·v = idV . Here, E is the object of edges, V is the object
of vertices, r1 and r2 yield the initial and the final vertex of an edge
and v yields loops. Let L = Mono be the class of all monomorphisms
and R consist of morphisms g : K → L such that

(a) g is surjective on vertices and
(b) if vertices g(a) and g(b) are joined by an edge in L then a and

b are joined by an edge in K.

In fact, this is the weak factorization system
(

�(C�), C�
)

from 2.9 where
C consists of the embedding of an empty multigraph into a vertex and
of the embedding of two vertices not connected by an edge to the edge.

The cylinder object cK : K + K → K is obtained by joining the two
copies i1(x) and i2(x) of a vertex x in K by two edges, one going from
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i1(x) to i2(x) and the other going from i2(x) to i1(x). Moreover, having
an edge from x to y, there is an edge going from i1(x) to i2(y) and an
edge going from i2(x) to i1(y). This means that K = E ′×K where E ′

is the non-oriented edge, i.e., a complete graph on two vertices.
Morphisms f, g : K → L are homotopic iff for each vertex x of K,

we have an edge from f(x) to g(x) and an edge from g(x) to f(x) in
L. Moreover, having an edge from x to y, there is an edge going from
f(x) to g(y) and an edge going from g(x) to f(y). Thus the homotopy
relation is not transitive.

The multigraphs (loops are not depicted)

◦ // ◦
a b

and

c
◦

yyttttttt

◦

99ttttttt // ◦
a b

are homotopy equivalent. In fact, the first multigraph K is a retract
of the second multigraph L via u · v = idK and the other composition
v · u is homotopic to idL. Hence K and L are isomorphic in K[R−1].
But K and L are not bisimilar. Indeed, assume that there exist

K
f←−−−−M

g−−−−→ L

with f, g ∈ R. There are x, y ∈ M with g(x) = b and g(y) = c. Since
f(x) and f(y) are joined by an edge in K, x and y are joined by an edge
in M and thus b and c are connected by an edge in L; a contradiction.

Lemma 3.7. Let K be a category having finite coproducts and (L,R)
be a weak factorization system such that every morphism in R is a split
epimorphism. Then every morphism in R is a homotopy equivalence.

Proof. Let r : K → L be in R and consider f with r · f = idL. It
suffices to show that f · r ∼ idK . Consider the square

K + K
(f ·r,idK)

//

cK

��

K

r

��
K r·sK

//

t

==z
z

z
z

z
z

z
z

z
z

L

which commutes because r · f · r = r. Since cK ∈ L and r ∈ R, there
is a diagonal t, which is a homotopy from f · r to idK . �
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Remark 3.8. We have proved a stronger statement: if r ∈ R is a split
epimorphism then r is a homotopy equivalence. Following 2.8, if 0→ L
is in L then every r : K → L from R is a homotopy equivalence.

Theorem 3.9. Let K be a category having finite coproducts and (L,R)
be a weak factorization system such that every morphism in R is a split
epimorphism. Then

(1) the categories K[R−1] and K/ ∼ are isomorphic,
(2) R = {f |Q(f) is an isomorphism} and
(3) K[R−1] is a locally small category.

Proof. (1) Following 3.7, Q inverts all morphism from R. Thus we get
a unique functor U such that the triangle

K P //

Q
!!B

BB
BB

BB
BB

BB
B K[R−1]

U
{{vvvvvvvvvvvvv

K/ ∼

commutes. Since both U · T and T · U are the identities, T is an
isomorphism. It immediately yields (2) to (3). �

Observation 3.10. Assume that (L,R) is a weak factorization system
in a category K such that every morphism in R is a split epimorphism.
Let R′ consist of compositions r · f where r ∈ R and f splits some
s ∈ R, i.e., s · f = id. Then two objects K and L are bisimilar iff there
is h : K → L in R′.

(1) R′ is closed under compositions.
Consider the composition

K1
f1−−−−→ X1

r1−−−−→ K2
f2−−−−→ X2

r2−−−−→ K3

where r1, r2 ∈ R and s1 · f1 = idK1 , s2 · f2 = idK2 for s1, s2 ∈ R.
Let

L
s2 //

r1

��

X1

r1

��
X2 s2

// K2

be a pulback. Then r1, s2 ∈ R and, since

s2 · f2 · r1 = r1 ,
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there is a unique t : X1 → L with

r1 · t = f2 · r1 and s2 · t = idX1 .

Thus

r2 · f2 · r1 · f1 = r2 · r1 · t · f1

where r2 · r1 ∈ R and s1 · s2 · t · f1 = idK1 , s1 · s2 ∈ R. Hence
r2 · f2 · r1 · f1 ∈ R′.

(2) If g · h, g ∈ R′ then h ∈ R′. Let g = r1 · f1 and g · h = r2 · f2

where r1, r2 ∈ R and fi splits some si ∈ R for i = 1, 2.
Consider

K1
h //

t

))TTTTTTTTTTTTTTTTTTTTT

f2

$$I
IIIIIIIIIIIIIIIIIIIIII K2

f1 // X
r1 // K3

L

r2

OO

r1

��
Y

r2

DD																

where r1, r2 ∈ R and s1 · f1 = idK2 , s2 · f2 = idK1 for s1, s2 ∈ R. Take
a pullback of r1 and r2 and consider the induced morphism t. Since
s2 · r1, s1 · r2 ∈ R,

(s2 · r1) · t = s2 · f2 = idK1 ,

and

(s1 · r2) · t = s1 · f1 · h = h ,

we get h ∈ R′.

(3) Any g ∈ R′ ∩ L is a split monomorphism.
Let g = r · f where s · f = id and r, s ∈ R. Consider the square

K
f //

r·f

��

X

r

��
L

t

>>~
~

~
~

~
~

~
~

~

idL

// L

If g ∈ L we get a diagonal t and we have

s · t · (r · f) = s · f = idK .

(4) R′ does not need to have the 2-out-of-3 property.



12 A. KURZ AND J. ROSICKÝ

Let SetX be the category of multigraphs with loops from 3.6 and
consider the following multigraphs K and L (loops are not depicted):

◦ // ◦oo

a b

and

c
◦

yyttttttt

%%JJJJJJJ

◦

99ttttttt // ◦oo
a b

Let f : K → L be the embedding (i.e., f(a) = a and f(b) = b) and
s, t : L → K split f by means of s(c) = a and t(c) = b. Then s ∈ R
and thus f ∈ R′. Assume that t ∈ R′. Then t = r · g where r ∈ R and
s′ · g = id for some s′ ∈ R. Then there is an edge from g(b) to g(c) and
thus and edge from b to c; a contradiction.

4. Stable equivalences

A full subcategoryM of a category K is weakly reflective if for every
object K in K there is a morphism rK : K → K∗ with K∗ ∈ M such
that every morphism f : K → M , M ∈ M factorizes through rK , i.e.,
f = g · rK .

Observation 4.1. Let (L,R) be a weak factorization system in a cate-
gory K with finite products and L4 the full subcategory of K consisting
of objects M injective w.r.t. any morphism from L. This means that for
every f : X → Y in L and every h : X → M there is g : Y → M with
g · f = h. Then L4 is weakly reflective in K where a weak reflection is
given by a factorization

K
rK−−−−−→ K∗ t−−−−→ 1

with rK ∈ L and t ∈ R of the unique morphism into the terminal object
1. Let (L4)inj consist of all morphism f such that each M ∈ L4 is
injective to f . Then

(L4)inj = {f | there exists g ∈ L with g = h · f for some h}
which means that (L4)inj is the left cancellable closure of L.

Indeed, it is easy to see that the left cancellable closure of L is
contained in L4inj . Conversely, having f : K → L in L, then a weak
reflection rK : K → K∗ factorizes through f . Thus f belongs to the
left cancellable closure of L. Consequently, L = (L4)inj whenever L is
left cancellable.

Conversely, consider a weakly reflective full subcategory M of K.
Then, following [AHRT] 1.5,

(
Minj , (Minj )

�
)

is a weak factorization
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system in K. A weak factorization of h : A→ B is

h : K
〈rK ,h〉−−−−−−−→ K∗ × L

p2−−−−→ L .

Therefore, weak factorization systems (L,R) in K with L left can-
cellable are precisely

(
Minj , (Minj )

�
)

for a weakly reflective full sub-
categoryM of K.

LetM be a weakly reflective full subcategory of an additive category
K. Morphisms f, g : K → L are called M-stably equivalent if f − g
factorizes through an object M from M. It is easy to see that this is
an equivalence relation compatible with the composition. One gets the
stable category K/M and the projection S : K → K/M. We have the
following results which are almost completely contained in [B] 4.5.

Lemma 4.2. LetM be a weakly reflective full subcategory of an addi-
tive category K. Then morphisms f, g : K → L areM-stably equivalent
iff f ∼ g with respect to the weak factorization system

(
Minj , (Minj )

�
)
.

Proof. Following 4.1, cylinder objects are

K ⊕K
cK−−−−−→ K∗ ⊕K∗ ⊕K

p3−−−−→ K

where pi · cj
K = rK for i = 1, 2 and j = 1, 2. Of course, p3 · cj

K = idK

for j = 1, 2. Hence c1
K − c2

K factorizes through K∗ ⊕ K∗ and thus
c1
K and c2

K are M-stably equivalent. Since M-stable equivalence is
compatible with the composition, f ∼ g implies that f and g are M-
stably equivalent. Conversely, let f and g beM-stably equivalent, i.e.,
we have

f − g : K
u−−−−→M

v−−−−→ L

with M ∈M. Then f ∼ g via

h : K∗ ⊕K∗ ⊕K −→ L

given by h · i1 = 0, h · i2 = −v · t and h · i3 = f where

K
u //

rK

  A
AA

AA
AA

AA
AA

AA
AA

M

K∗

t

>>|||||||||||||||

�

The proof contains the description of a cylinder object using weak
reflections toM, which may be useful in homotopy theory of additive
categories. We will need this in the following proof.
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Consequently, homotopy equivalences coincide withM-stable equiv-
alences, i.e., with morphisms f admitting g with g · f and f · g M-
stably equivalent to the identities. A monomorphism f is called an
M-monomorphism if its cokernel belongs to M and an epimorphism
g is called anM-epimorphism if its kernel belongs toM.

Theorem 4.3. Let (L,R) be a weak factorization system in an additive
category K such that L is left cancellable. Then the following conditions
are equivalent for a morphism h:

(i) h ∈ R,
(ii) h is a homotopy equivalence,
(iii) h is an L4-stable equivalence, and
(iv) h = g · f with f a split L4-monomorphism and g a split L4-

epimorphism.

Proof. (i) ⇒ (iii). Consider h ∈ R and the factorization

h : K
〈rK ,h〉−−−−−−−→ K∗ ⊕ L

p2−−−−→ L

from 4.1. We have

K
idK //

〈rK ,h〉

��

K

h

��
K∗ ⊕ L

t

<<y
y

y
y

y
y

y
y

p2

// L

and thus h is a retract of p2 in K→ via

K
h //

〈rK ,h〉

��

L

idL

��
K∗ ⊕ L p2

// L

K
h // L

K∗ ⊕ L

t

OO

p2

// L

idL

OO

and

Since p2 · i2 = idL and i2 · p2 = idK∗⊕L−i1 · p1, p2 is an L4-stable
equivalence with an L4-stable inverse i2. Hence S : K → K/L4 fac-
torizes through P : K → K[R−1] and thus each morphism from R is
an L4-stable equivalence.
(ii) ⇔ (iii) following 4.2
(iii)⇒ (iv). Let h = g ·f be a factorization of an L4-stable equivalence
with f ∈ L and g ∈ R. Following the proof of (i)⇒ (iii), g is a retract
of a split L4-epimorphisms p2. Hence g is a split L4-epimorphism.
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Since (i) ⇒ (iii), g is an L4-stable equivalence and thus f is an L4-
stable equivalence. Let t be an L4-stable inverse of f . Then t · f is
L4-stably equivalent to the identity and thus we have a factorization

idK −t · f : K
u−−−−→M

v−−−−→ K

through M ∈ L4. Since f ∈ L, we have a factorization

K
f //

u

  A
AA

AA
AA

AA
AA

L

w

~~~~
~~

~~
~~

~~
~

M

We have

idK −t · f = v · u = v · w · f
and thus

idK = (v · w + t) · f .

Thus f is a split monomorphism. Consequently, f has a cokernel g :
L→ P which is a split epimorphism.

Consider a morphism h such that S(h · f) = 0 in K/L4. Then h · f
factorizes through N ∈ L4

K
f //

r

��

L

p

~~~
~

~
~

~
~

~
~

h

��
N s

// X

Since f ∈ L, there is p : L→ N with p · f = r. We have

(h− s · p) · f = h · f − s · p · f = h · f − s · r = 0

and thus there is q : P → X such that

q · g = h− s · p .

Hence S(q · g) = S(h) and thus S(g) is a weak cokernel of S(f) in
K/L4. Since S(g) is a split epimorphism, S(g) is a cokernel of S(f) in
K/L4. However, S(f) is an isomorphism and therefore P is the null
object in K/L4. Consequently, P ∈ L4, which proves that f is a split
L4-monomorphism.
(iv) ⇒ (i) Let f : K → L be a split L4-monomorphism. Then f is an
injection of a biproduct

f : K −→ K ⊕M
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where M ∈ L4. Since the corresponding projection belongs to R (see
4.1 or the proof of 1.6 in [AHRT]), we get f ∈ R. Any split L4-
epimorphism g : K → L is a projection of a biproduct

L⊕M −→ L

with M ∈ L4 and thus belongs to R. �

Observation 4.4. Following the proof of (iii) ⇒ (iv), any g ∈ R is
a split L4-epimorphism. Conversely, following (iv) ⇒ (i), any split
L4-epimorphism belongs to R. Thus compositions g · f from (iv) are
precisely morphism from R′ (cf. 3.10). Consequently, homotopy equiv-
alent objects are precisely bisimilar objects.

Example 4.5. Consider the category R-Mod of R-modules and the
class L = Mono of all monomorphisms. Then L4 consists of injective
R-modules and R = Mono� of all epimorphisms with an injective
kernel. Then (L,R) is a weak factorization system, L is left cancellable
and R-Mod /L4 is the usual stable category of modules.

5. Preshaves over posets

An object K of a category K is called indecomposable if the hom-
functor hom(K,−) : K → Set preserves binary coproducts.

Proposition 5.1. Let K be a category with finite coproducts and (L,R)
a weak factorization system such that R = C� where every morphism
from C has an indecomposable domain. Then K/ ∼ is equivalent to a
poset.

Proof. If suffices to show that f ∼ g for each f, g : K → L. Consider a
commutative square

X
u //

f

��

u′   A
A

A
A K + K

∇

��

K

i1

;;vvvvvvvvv

idK

$$H
HH

HH
HH

HH
H

Y v
//

v

>>}}}}}}}}
K

with f ∈ C. Then X is indecomposable and thus u factorizes through
one of the coproduct injections, say, u = i1 · u′. Then

i1 · v · f = i1 · ∇ · u = i1 · ∇ · i1 · u′ = i1 · u′ = u
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and ∇ · i1 · v = v. Hence ∇ ∈ R and thus the cylinder object is
K = K + K with

cK = idK+K : K + K −→ K + K .

Consequently, f ∼ g for any f, g : K → L. �

Remark 5.2. If K/ ∼ is equivalent to a poset then two objects K and
L have QK ∼= QL iff there are morphisms both K → L and L→ K.

Proposition 5.3. Let K have finite limits and finite coproducts and
(L,R) be a weak factorization system such that K/ ∼ is equivalent to
a poset. Then K[R−1] is equivalent to a poset.

Proof. Following 2.3, K[R−1] is a quotient of the category of spans

K
r←−−−− X

f−−−−→ L

with r ∈ R. Consider two spans from K to L

K X1
r1oo f1 // L

X2

r2

OO

f2

��

X
r1

oo

r2

OO

L

and a pullback of r1 and r2. Following our assumption the objects
QX and QL are either isomorphic in K/ ∼ or Q(f1 · r2) = Q(f2 · r1).
Following 3.4, the objects PX and PL are either isomorphic in K[R−1]
or P (f1 · r2) = P (f2 · r1). In the first case, PK ∼= PL. In the second
case, we have

P (f1) · P (r1)
−1 = P (f1) · P (r2) · P (r2)

−1 · P (r1)
−1

= P (f1) · P (r2) · P (r1)
−1 · P (r2)

−1

= P (f2) · P (r1) · P (r1)
−1 · P (r2)

−1 = P (f2) · P (r2)
−1 .

Thus the starting spans yield the same morphism in K[R−1]. �

Remark 5.4. If all morphisms in R are split epimorphisms then 5.3
immediately follows from 3.9.
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Observation 5.5. Let P be a poset and consider the category K =
SetP

op

of presheaves on P . Let P⊥ be the full subcategory of SetP
op

consisting of the image of P in the Yoneda embedding Y : P → SetP
op

with the initial presheaf 0 added. Then P⊥ is nothing else than P with
a new initial element added. Following 2.9, we get a weak factorization
system

(
�(P�

⊥ ),P�
⊥

)
in SetP

op

. Since all objects in P⊥ are indecom-
posable, it follows from 5.1 and 5.3 that both categories K/ ∼ and
K[(P�

⊥ )−1] are equivalent to posets. Bisimilarity in this situation was
used in [JNW] to formalize bisimilarity of processes. P�

⊥ is the class
of P⊥-open maps. 5.1 and 3.9 show that inverting all P⊥-open maps
gives the category that has the same objects as SetP

op

and an arrow
K → L iff there is some arrow (simulation) K → L in SetP

op

.

Proposition 5.6. Let P be a poset. Then the following conditions are
equivalent:

(i) �(P�
⊥ ) coincides with the class Mono of all monomorphisms,

(ii) for every element x ∈ P, any non-empty subset of
{y ∈ P|y ≤ x} has a greatest element.

Proof. (i)⇒ (ii): Assume (i) and consider x ∈ P and a non-empty
subset Z of {y ∈ P|y ≤ x}. Let K be a subfunctor of the representable
functor Y (x) : Pop → Set given as follows

K(p) =

{
1 if p ≤ z for some z ∈ Z

0 otherwise

(here 0 = ∅ and 1 = {∅}). Then the embedding K → Y (x) belongs to
�(P�

⊥ ) and thus, following 2.9, is a retract of a transfinite composition
gλ of a chain gij : Ki → Kj, i ≤ j < λ (λ is a limit ordinal) where
K0 = K, gii+1 is a pushout of a morphism in P⊥ and, for j limit, gij

is a colimit of gik, i ≤ k < j. Let i be the smallest ordinal i ≤ λ such
that gi = g0i factorizes through a representable functor. It makes sense
because gλ has this property. Since representable functors are finitely
presentable (cf. [AR] 1.2.(7)), i is either an isolated ordinal or i = 0.
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Assume that i = j +1. Then we have a pushout below where A, B ∈
P⊥ and a factorization of gi through a representable functor C

A
f //

u

��

B

v

��
K

gj //

h

  @
@@

@@
@@

@@
@@

@@
@@

Kj

gji // Ki

C

t

>>}}}}}}}}}}}}}}}

Then either t = gji · p for some p or t = v · q for some q. In the first
case,

gji · gj = gi = t · h = gji · p · h
and thus p ·h = gj because gji is a monomorphism. Hence gj factorizes
through a representable functor, which contradicts the definition of i.
In the second case,

gji · gj = t · h = v · q · h
and thus there is a unique w : K → A such that

u · w = gj and f · w = q · h .

Since K 6= 0, we have A 6= 0 as well and thus A is representable. Hence
gj factorizes through a representable functor again; a contradiction.

Therefore i = 0, which means that g0 = idK factorizes through a
representable functor. Thus K is a retract of a representable functor
and, since P is a poset, K is representable. Thus Z has the greatest
element.

(ii)⇒ (i) The condition (ii) clearly means that subfunctors of repre-
sentable functors are representable or 0. Since P is a poset, quotients
of representable functors are representable. Following the proof of [Be]
1.12, any monomorphism in SetP

op

belongs to �(P�
⊥ ). �

Corollary 5.7. Let P be a poset such that, for every element x ∈ P,
any non-empty subset of {y ∈ P|y ≤ x} has a greatest element. Then
SetP

op

[(Mono�)−1] is equivalent to a poset.

Example 5.8. Let P be a two-element chain. Then SetP
op

= Set→ is
the category of maps and P⊥ has three elements o0 : 0→ 0, o1 : 0→ 1
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and id1 : 1→ 1. Then a morphism (u1, u2) : f → g

A1

f //

u1

��

A2

u2

��
B1 g

// B2

belongs to P�
⊥ = Mono� iff u2 is surjective and for every a ∈ A2 and

b ∈ B1 with g(b) = u2(a) there is c ∈ A1 such that f(c) = a and u1(c) =
b. This implies that u1 is surjective as well. In other words, (u1, u2) is a
(surjective) bisimulation, that is, using the transition system notation
b0 → b for g(b) = b0 and a → c for f(c) = a, it holds that for any
“transition” b0 → b and any a with u2(a) = b0 there is c such that
a→ c and u1(c) = b.

Following 5.7, we have that Set→[(Mono�)−1] = Set→/∼ is equiv-
alent to a poset. The objects id1 and id1 +o1 are isomorphic in this
category because there are morphisms

id1 → id1 +o1 and id1 +o1 → id1 .

But the objects id1 and id1 +o1 are not bisimilar. In fact, assume that
there are f : A→ B and morphisms

id1
(u1,u2)←−−−−−−− f

(v1,v2)−−−−−−−→ id1 +o1

in Mono�. Then (u1, u2) makes f surjective and thus id1 +o1 is surjec-
tive as well; a contradiction.
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Jiř́ı Rosický
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