
Coalgebras and Modal Logic

Lecture Notes from ESSLLI 2001

Alexander Kurz

October, 2001

Preface

These course notes present universal coalgebra as a general theory of systems.

By ‘system’ we understand some entity running in and communicating with an environment.
We also assume that a system has a fixed interface and that the environment can perform
only those observations/experiments/communications on the system allowed by the interface.
By ‘general theory’ we understand a theory which allows to investigate in a uniform way as
many different types of systems as possible. Of course, here is a trade off: the more diverse
the types of systems we admit for study, the less results we can expect to obtain in a uniform
way. It is one of the aims of this course to show that the notion of coalgebra is general
enough to cover many types of systems and is specific enough to allow for quite a number of
interesting results.

The term ‘universal’ coalgebra not only refers to the generality of the theory but also reflects
that universal coalgebra dualises (to some extent) the well-established area of universal alge-
bra. To explore this duality is another of the main topics of this course. In particular we will
see what can be said about the duality of logics for algebras and coalgebras.

Concerning prerequisites, Chapters 1 and 4 should be easily accessible. Chapter 2 requires
a bit of category theory which was introduced in the course in more detail than in the
text. The Appendix recalls the necessary definitions but cannot replace an introduction to
category theory. Section 2.5 contains additional material illustrating the techniques presented
in Chapter 2. Chapter 5 needs Chapters 2.1 and 4, Chapter 6 builds on Chapter 2 (excluding
Section 2.5).

The exercises in the text are essential and are not meant to be skipped. They should be
easy to solve, often even obvious, but the solution needs ideas which are important in the
following. The exercises in the separate sections contain additional material which did not fit
in a one week’s course. They may be more difficult.

I gave courses based on earlier versions of these notes at the Faculty of Informatics of
the Masaryk University in Brno, Czech Republic, and at ESSLLI 2001 in Helsinki, Finland.
I would like to thank the participants, for many fruitful and enjoyable discussions and for
comments helping to improve these notes. I am also grateful to Dirk Pattinson for discussions
on Chapter 5.3. Diagrams were produced with Paul Taylor’s macro package.

These lecture notes were written mainly during my stay as an ERCIM fellow at the
Masaryk University, Brno, Czech Republic. I owe special thanks to Luboš Brim, Antońın
Kučera, Jǐŕı Rosický, and the Faculty for Informatics.

Amsterdam, October 2001.

3

4

Contents

1 Systems – An Introduction 7

1.1 Systems and Processes . 7

1.2 Ingredients of a Theory of Systems . 9

1.2.1 Interfaces . 9

1.2.2 The Black Box View of a Process . 9

1.2.3 The Black Box View of a System . 10

1.2.4 Morphisms of Systems . 10

1.2.5 The Black Box View of the Class of all Systems 11

1.2.6 Behavioural Equivalence . 12

1.2.7 Bisimulation . 13

1.2.8 Coinduction . 14

1.2.9 Summary and Exercise . 15

1.3 An Extended Example: Deterministic Automata 16

1.3.1 Systems with Input . 16

1.3.2 Moore and Mealy Automata . 17

1.3.3 The Final Automaton of all Languages 19

1.4 More Examples . 21

1.4.1 Objects and Classes . 21

1.4.2 Datatypes . 22

1.4.3 Transition Systems . 23

1.5 Summary of Examples . 24

1.6 Exercises and Problem . 26

1.7 Notes . 26

2 Coalgebra 27

2.1 Coalgebras . 27

2.2 Basic Constructions on Coalgebras . 30

2.2.1 Coproducts . 30

2.2.2 Quotients and Subcoalgebras . 30

2.2.3 Unions . 33

2.2.4 Final and Cofree Coalgebras . 35

2.3 Algebras . 37

2.4 Duality . 40

2.5 Extended Example: Limits . 42

2.6 Exercises . 44

2.7 Notes . 45

5

6 CONTENTS

3 Coalgebra II 47
3.1 Colimits . 47
3.2 Behaviours . 47
3.3 Behavioural Equivalence and Bisimulation . 48
3.4 Existence of Final and Cofree Coalgebras . 50

3.4.1 Final Coalgebras via Union of All Behaviours 50
3.4.2 Final Coalgebras via Final Sequences 50

3.5 Notes . 50

4 Modal Logic 51
4.1 Kripke Semantics . 51

4.1.1 Introduction . 51
4.1.2 Frames and Models . 52
4.1.3 Definability . 54
4.1.4 Multimodal Logics . 54

4.2 Bisimulation . 55
4.3 The Logic of Bisimulation . 57
4.4 Exercises . 58
4.5 Notes . 60

5 Modal Logics for Coalgebras 61
5.1 Coalgebraic Logic . 61
5.2 Logics Designed for Specific Signatures . 63
5.3 Modalities from Functors . 64

5.3.1 Modalities Induced by Natural Transformations Σ→ P 64
5.3.2 Modalities Induced by Predicate Liftings 67

5.4 Exercises . 69
5.5 Notes . 71

6 Duality of Modal and Equational Logic 73
6.1 Preliminaries . 73
6.2 Modal Formulas as Subcoalgebras . 74
6.3 Equations as Quotients . 77
6.4 Duality of Modal and Equational Logic . 78
6.5 A (Co)Variety Theorem . 78
6.6 Exercises . 81
6.7 Notes . 83

A Category Theory 85

B Notation 91

Chapter 1

Systems – An Introduction

The aim of this chapter is to show why and how coalgebras model systems. The emphasis is
on a number of familiar examples, leaving a uniform treatment of them to Chapter 2.

Section 1.1 starts with an informal understanding of systems and processes and proposes a
possible formalisation. Section 1.2, taking a particular type of systems as example, shows the
ingredients of a general theory of systems. Central notions are behavioural equivalence, final
system, bisimulation, and coinduction. Section 1.3 shows in detail how very much the same
theory can be developed for a different type of systems and Section 1.4 presents even more
examples which can be treated along the same lines.

1.1 Systems and Processes

Before we start to look for a mathematical model for systems, we should agree on an informal
level on what we understand by ‘system’. The following—hopefully—seems reasonable.

1. Systems are reactive, that is, unlike algorithms, they are not supposed to terminate and
announce a result, but are supposed to run, possibly forever, and to communicate, while
running, with their environment.

2. The possible communications between a system and the environment are described in
an interface. An external observer can observe a system only through the interface.

3. The external observer’s view is called the black box view of a system. The black box
view is given by the complete observable behaviour of the system.

In general, given a system, we are interested rather in its behaviour than in the actual
system itself. One challenge for a general theory of systems is (1) to allow for a rich class of
interfaces (types of systems) and, at the same time, (2) to describe the relation of systems
and their behaviours in a uniform way. The aim of this chapter is to give enough examples
showing that the theory of coalgebras achieves (1). To see how (2) is solved is postponed
until chapter 2. Another challenge would be to find a uniform logic to specify systems. This
issue is discussed in Chapters 5 and 5.

In order to describe a system we think of it as a set of states X and a transition-function
ξ describing for every state x ∈ X the effect ξ(x) of taking an observable transition in state

7

8 CHAPTER 1. SYSTEMS – AN INTRODUCTION

x. That is, a system is a function

X
ξ−→ ΣX

where we use the notation ΣX to indicate the set of possible outcomes of taking a transition.
Σ is called the type or signature, X is called the carrier or set of states of the system, and
ξ is called the structure or transition-function of the system.

When we start to run or observe a system (X, ξ) we assume that it is in a given initial state
x0. A system together with a state is called a process.1 We denote processes by ((X, ξ), x0)
or shorter (X, ξ, x0). If the system is clear from the context we also denote the process simply
by its initial state.

Example 1.1.1 (Streams).

1. Consider a system for which ‘taking a transition’ just means to output an element a ∈ A
of some given set A. Such a system is given by a function

X
ξ−→ A

where ΣX = A. This system can only take one transition in its life-time.

2. A system that can output elements of A forever can be described by a function

X
ξ−→ A×X

Suppose the system is in some state x0 and takes a transition yielding ξ(x0) = (a, x1).
Then a next transition can be taken in x1, and so on. Such a process (X, ξ, x0) is called
a stream.

Exercise 1.1.2. This exercise presents some more simple example of systems (the first two
systems below may seem to be too simple to be interesting at all but they are useful to build
up more complicated systems). You should try to convince yourself of the following:

1. Imagine a system that can do nothing but stop. Such a system can be modeled by a
function

X
ξ−→ 1,

where 1 = {∗} denotes some one-element set.

2. Imagine a system which, like a simple clock or metronome, just take transitions but
produces no further output. Such a system can be modeled by a function

X
ξ−→ X.

3. Consider the example of streams above. How can we model streams that are not nec-
essarily infinite but also may terminate? A system that may output forever elements in
A but also may stop is a function

X
ξ−→ A×X + 1,

where + should be understood as exclusive or (formally it denotes disjoint union of
sets).

1The term ‘process’ is often used to denote an equivalence class of processes up to a notion of behavioural
equivalence, see Section 1.2.8.

1.2. INGREDIENTS OF A THEORY OF SYSTEMS 9

1.2 Ingredients of a Theory of Systems

A theory of systems should describe the relation of systems and their behaviours in terms of
a given interface. This section explains how this can be done by means of the example of
streams. It is also shown how the notion of behaviour leads to final systems and, therefore,
allows definitions and proofs by coinduction.

1.2.1 Interfaces

We said that a signature Σ for systems is an operation mapping a set (of states) to a set
ΣX containing the possible effects of an observable transition. We have seen the following
examples:

Σ ΣX Process

1 1 stop

A A outputs a ∈ A once

Id X metronome (running forever)

A×− A×X stream over A

A×−+ 1 A×X + 1 finite or infinite list over A

In each of this cases we expect from an interface to specify the “observable effect” of
a transition. Thinking a bit about the examples we see that Σ itself provides us with an
appropriate notion of interface.

1.2.2 The Black Box View of a Process

From the point of view of the environment the states of a system are not observable. For
example, specifier and user of a system are not interested in the system itself but only in
the complete observable behaviour of the system. In the following we explain this notion of
behaviour.

Let us reconsider the example of streams

X
ξ−→ A×X

and think about the appropriate notion of behaviour.
We assume that the system is in a given state x0 ∈ X. Starting from x0 the system takes

a transition ξ(x0) = (a0, x1) and continues with ξ(x1) = (a1, x2) and so on. That is, the
system produces an infinite list

(x0, (a0, x1), (a1, x2), . . .).

Assuming that the states xi are not observable, the behaviour of the process ((X, ξ), x0)
is then given by2

Beh(x0) = (a0, a1, a2 . . .)

where we should in fact write Beh(X,ξ)(x0) but usually drop the subscript.

2In case you need a precise definition (for example to solve the exercises) go ahead to Definition 1.2.4.

10 CHAPTER 1. SYSTEMS – AN INTRODUCTION

1.2.3 The Black Box View of a System

We have seen that we can assign to every state of a system its behaviour. The behaviour of
a system is simply the set of all these behaviours. A fundamental observation is now that

the behaviour of a system is itself a system.

To explain this, let (X, ξ) be a system and Beh(X) = {Beh(x) : x ∈ X} the set of all
behaviours of X. To conceive of Beh(X) as a system we have to exhibit a transition-function
β : Beh(X)→ A×Beh(X). β has to map an infinite list l = (a0, a1, a2, . . .) into A×Beh(X).
There is an obvious candidate:

β : Beh(X)→ A× Beh(X)

(a0, a1, a2, . . .) 7→ 〈a0, (a1, a2, . . .)〉

(We use (. . .) to indicate lists and 〈·, ·〉 to denote tuples of a cartesian product.)

Having seen that the behaviour of a system is a system we can ask what the behaviour
of a behaviour is. Following our intuition that the behaviour gives us all we can know of
a system, we expect the behaviour of a behaviour to be the behaviour itself. This is made
precise in the following

Exercise 1.2.1. Since (Beh(X), β) is a system, we can consider for each l ∈ Beh(X) the
behaviour of l. Convince yourself that

1. the behaviour of some l ∈ Beh(X) is l

and conclude that

2. the behaviour of the system (Beh(X), β) is (Beh(X), β).

As a consequence of the previous exercise, we know that x and Beh(x) have the same
behaviour. The next section shows that this is due to Beh being a morphism of systems.

1.2.4 Morphisms of Systems

In a general theory of systems we are interested not so much in particular systems but
more in the relationships between different systems or in structural properties of collections
of systems. The main tool to investigate the relationships between systems are structure
preserving mappings between systems.

First, let us introduce a notation which is convenient to work with streams.

Notation 1.2.2. Given a stream (X, ξ, x) with ξ(x) = (a, x′) we write head(x) for the first
value a and tail(x) for the remainder x′. As usual we dropped the subscripts of head (X,ξ)(x)
and tail (X,ξ)(x).

Using this notation, we define the notion of a morphism for streams.

Definition 1.2.3. Let X
ξ−→ A×X and X ′

ξ′−→ A×X ′ be two systems. A homomorphism,
or morphism for short, is a function f : X → X ′ such that

head(f(x)) = head(x) (1.1)

tail(f(x)) = f(tail(x)) (1.2)

(In these equations, the occurrences of head and tail on the left-hand side refer to (X ′, ξ′),
the occurrences on the right-hand side to (X, ξ).)

1.2. INGREDIENTS OF A THEORY OF SYSTEMS 11

Another use of the notation above is that we can now give a precise definition of behaviour.

Definition 1.2.4 (Behaviour of streams). Given a system X → A × X and x0 ∈ X de-
fine Beh(x0) = (head(tailn(x0)))n∈N where tailn is defined inductively via tail0(x) = x,
tailn+1(x) = tail(tailn(x)).

The following exercises are essential. First show that behaviours are invariant under
morphisms.

Exercise 1.2.5 (Behaviours are invariant under morphisms).
Given a (stream)morphism f : (X, ξ)→ (Y, η), show that the behaviour of x ∈ X equals the
behaviour of f(x) ∈ Y .

In particular, two states that can be identified by a morphism have the same behaviour.
To show the converse, namely that any two states that have the same behaviour can be
identified by some morphism, we show that Beh : X → Beh(X) is a morphism.

Exercise 1.2.6 (Beh : X → Beh(X) is a morphism). Let (X, ξ) be a system (of streams)
and (Beh(X), β) its behaviour.

1. Show that the mapping Beh : X → Beh(X) is a morphism (X, ξ)→ (Beh(X), β).

2. Show that Beh : X → Beh(X) is moreover the unique such morphism (Hint: Use
induction to reason about lists l = ((ai)i∈N)).

As a corollary to the three exercises we obtain the fundamental relationship between
behaviours and morphisms:

Observation 1.2.7. Two states have the same behaviour iff these states are identified by
some morphisms.

1.2.5 The Black Box View of the Class of all Systems

Much of the power of a general theory of systems comes from the observation that

all behaviours of all systems constitute themselves a system.

We explain this in the case of streams again.
Since for any process (X, ξ, x) its behaviour is an infinite list (ai)i∈N, the set of all be-

haviours of all processes is AN = {f : N → A} = {(ai)i∈N, ai ∈ A}. Now, in the same way
as the behaviour of a system, we can equip the set of all behaviours of all systems with a
transition structure that makes it into a system:

ζ : AN → A×AN

(a0, a1, a2, . . .) 7→ 〈a0, (a1, a2, . . .)〉
(1.3)

This concept of a system of all behaviours is important for the following reason: Intuitively,
all we can know from a black box point of view about systems must be contained in this system
of all behaviours. We therefore expect it to play a central role in the theory of systems and
in fact it does. For the moment, we will content ourselves to characterise this system of all
behaviours in a simple but most useful way:

Since we know from Exercise 1.2.6 that the mapping from a system to its behaviour is a
morphism, we know that

12 CHAPTER 1. SYSTEMS – AN INTRODUCTION

• for any system there must be a morphism into the system of all behaviours (namely the
one mapping each process to its behaviour).

Moreover, since morphisms preserve behaviours,

• for any system there can be at most one morphism into the system of all behaviours.

This argument shows that the system of all behaviours is a final system:

Definition 1.2.8 (Final system). A system (Z, ζ) is called final (or terminal) iff for all
systems (X, ξ) there is a unique morphism (X, ξ)→ (Z, ζ).

That the system of all behaviours is characterised by finality is shown by

Proposition 1.2.9. Any two final systems are isomorphic.

Proof. Let (Z, ζ) and (Z ′, ζ ′) be two final systems. The existence part of finality gives us two
morphisms f : Z ′ → Z and f ′ : Z → Z ′ and the uniqueness part shows that f ◦ f ′ = idZ and
f ′ ◦ f = idZ′ , that is, f and f ′ are isomorphisms.

In the following exercise you are asked to make precise, in the case of streams, the above
argument that the system of all behaviours is the final system.

Exercise 1.2.10. Show that (AN, ζ) as given by (1.3) is final.

1.2.6 Behavioural Equivalence

Notions of observational or behavioural equivalence (like e.g. bisimulation) play a central
role in the theory of processes or state based dynamic systems. Once we have a notion of
behaviour there is an obvious definition of behavioural equivalence:

Two processes/systems are behaviourally equivalent iff they have the same behaviour.

This can be made precise using the notion of the final system.

Definition 1.2.11. Let (X, ξ), (X ′, ξ′) be two systems and Beh, Beh ′ the two corresponding
unique morphisms into the final system.

1. Two processes (X, ξ, x), (X ′, ξ′, x′) are behaviourally equivalent iff Beh(x) = Beh ′(x′).

2. Two systems (X, ξ), (X ′, ξ′) are behaviourally equivalent iff Beh(X) = Beh ′(X ′).

This definition has the advantage that it agrees with our understanding of the final system
as the system of all the behaviours. Recalling, however, that two processes are behaviourally
equivalent iff they can be identified by a morphism (Observation 1.2.7), there is another
obvious definition of behavioural equivalence.

Definition 1.2.12. Let (X, ξ), (X ′, ξ′) be two systems.

1. Two processes (X, ξ, x), (X ′, ξ′, x′) are behaviourally equivalent iff there are morphisms

(X, ξ) (X ′, ξ′)

•�
f
′f -

such that f(x) = f ′(x′).

1.2. INGREDIENTS OF A THEORY OF SYSTEMS 13

2. Two systems (X, ξ), (X ′, ξ′) are behaviourally equivalent iff there are surjective mor-
phisms

(X, ξ) (X ′, ξ′)

•�
� f

′f --

This definition is more elementary in the sense that it only relies on the notion of morphism
and not on the existence of final systems.

Exercise 1.2.13. Show that both definitions are equivalent if the final system exists. [Hint:
Use that (1) the disjoint union of two systems is a system and that (2) every morphism
g : (X, ξ) → (Z, ζ) ‘factors through its image’, ie that there is a surjective morphism e and

an injective morphism m such that g = (X, ξ)
e
� Im(g)

m
↪→ (Z, ζ).]

1.2.7 Bisimulation

In the previous section, we have seen two definitions of behavioural equivalence. This section
shows that behavioural equivalence agrees with what is known as bisimulation.

Definition 1.2.14. Let (X, ξ), (X ′, ξ′) be two systems of streams and R ⊂ X ×X ′. Then R
is a bisimulation iff

x R x′ ⇒ head(x) = head(x′)

x R x′ ⇒ tail(x) R tail(x′)

Two processes (X, ξ, x), (X ′, ξ′, x′) are bisimilar iff there is a bisimulation R such that x R x′.

Such a relation is called a bisimulation since x R x′ implies that a transition x 7→
〈head(x), tail(x)〉 can be simulated by a transition x′ 7→ 〈head(x′), tail(x′)〉 and vice versa.

In order to prove that two processes are bisimilar we first have to choose an appropriate
relation R (which is usually not difficult) and then to check that it is indeed a bisimulation
(which is not difficult if we made a good choice of R in the first place). A first example for
this strategy is given by “⇒ ” of the proof below, we will see more examples in sections 1.2.8
and 1.3.3.

Proposition 1.2.15. Two processes are behaviourally equivalent iff they are bisimilar.

Proof. Let (X, ξ) and (X ′, ξ′) be two systems of streams. Recall that x ∈ X and x′ ∈
X ′ are behaviourally equivalent iff head(tailn(x)) = head(tailn(x′)) for all in n ∈ N (see
Definition 1.2.4).
“ ⇒ ”: Let (X, ξ, x), (X ′, ξ′, x′) be two behaviourally equivalent processes. Define R =
{〈tailn(x), tailn(x′)〉, n ∈ N}. To show that R is a bisimulation note that y R y′ ⇒ tail(y) R
tail(y′) is trivially satisfied by definition of R. Moreover, since x, x′ have the same behaviour,
ie head(tailn(x)) = head(tailn(x′)) for all n ∈ N, it follows y R y′ ⇒ head(y) = head(y′).
“⇐ ”: Let R be a bisimulation for (X, ξ) and (X ′, ξ′) and let x R x′. We have to show that
head(tailn(x)) = head(tailn(x′)) for all n ∈ N. But tailn(x) R tailn(x′) is easily shown by
induction on n ∈ N.

14 CHAPTER 1. SYSTEMS – AN INTRODUCTION

Remark 1.2.16. To reason about behavioural equivalence the definitions of the previous
section are convenient. But to establish that two given processes are behaviourally equivalent,
the standard technique is to exhibit a bisimulation. (The reason is that to check whether
a relation is a bisimulation we only need to consider single transitions and not complete
behaviours. The inductive reasoning we save is hidden in the above Proposition, part “⇐ ”.)

1.2.8 Coinduction

Usually, one is interested in processes only up to behavioural equivalence. It is therefore
sensible to consider behavioural equivalence as equality on processes. From this point of view,
we can consider the elements of the final system as the processes:

Observation 1.2.17. In the final system, two processes are behaviourally equivalent iff they
are equal.

This allows for a substantial simplification: Instead of reasoning about processes up to
behavioural equivalence we reason up to equality. For example, instead of defining an oper-
ation on processes by defining it on representatives of equivalence classes and then showing
that the definition is invariant under the choice of representatives, we can use the principle
of definition by coinduction. It goes as follows.

Since we know that for any system X
ξ−→ ΣX there is a unique morphism into the final

system (Z, ζ), we can define a function f : X → Z just by giving an appropriate structure ξ:

for all X
ξ−→ ΣX there is a unique morphism (X, ξ)

f−→ (Z, ζ)

We say that a function f : X → Z is defined by coinduction if it arises in such a way from a
ξ : X → ΣX.

For example, let us define the operation merging two streams. That is, we are looking for
a function

merge : AN ×AN → AN

such that

head(merge(l1, l2)) = head(l1) (1.4)

tail(merge(l1, l2)) = merge(l2, tail(l1)) (1.5)

This looks more circular than like a definition, but defining (note that we let X above to be
AN ×AN now)

ξ : AN ×AN → A×AN ×AN

〈l1, l2〉 7→ 〈head(l1), 〈l2, tail(l1)〉〉,

it is not difficult to see that merge is defined by coinduction:

Exercise 1.2.18. Let merge be an arbitrary function AN × AN → AN. Show that merge is a
morphism (AN×AN, ξ)→ (AN, ζ) iff it satisfies 1.4 and 1.5. [Hint: Show that 1.4 and 1.5 are
instances of 1.1 and 1.2 of Definition 1.2.3.]

1.2. INGREDIENTS OF A THEORY OF SYSTEMS 15

It follows that there is a unique function merge : AN × AN → AN satisfying 1.4 and 1.5,
that is, 1.4 and 1.5 are a valid definition. (Existence follows since there is a morphism
(AN × AN, ξ) → (AN, ζ) and, moreover, this morphism satisfies 1.4 and 1.5. Uniqueness
follows since every function satisfying 1.4 and 1.5 is a morphism and morphisms into the final
system are unique.)

For another example do the following

Exercise 1.2.19. Find a function ξ : AN → A×AN showing that

head(even(l)) = head(l) (1.6)

tail(even(l)) = even(tail(tail(l))) (1.7)

is a coinductive definition.

Observation 1.2.17 stated that in the final system two processes are behaviourally equiv-
alent iff they are equal. This statement is also called the coinduction proof principle: In
order to show that two elements of a final system are equal it is enough to show that they
are behaviourally equivalent or, in view of Proposition 1.2.15, that they are bisimilar.

For an example of an application of the coinduction proof principle, recall the functions
merge and even and define odd(x) = even(tail(x)). We now want to show

merge(even(x), odd(x)) = x

It is not difficult to guess a bisimulation

R = {〈merge(even(x), odd(x)) , x〉 , x ∈ AN}.

We just have to check the two clauses of Definition 1.2.14. For the first calculate

head(merge(even(x), odd(x))) = head(even(x))

= head(x)

and for the second

tail(merge(even(x), odd(x))) = merge(odd(x), tail(even(x)))

= merge(odd(x), even(tail(tail(x))))

= merge(even(tail(x)), odd(tail(x))),

which is related to tail(x) by definition of R.

1.2.9 Summary and Exercise

We started with the idea that the black box view of a system X → ΣX is obtained by
not allowing to observe the states of the system. This idea lead us—for the signature Σ =
(A×−)—to the following observations:

• We can assign to each process its behaviour.

• Two processes have the same behaviour iff the processes can be identified by some
morphisms. (In particular: Behaviours are invariant under morphisms.)

16 CHAPTER 1. SYSTEMS – AN INTRODUCTION

• There is a final system (Z, ζ) and

– (Z, ζ) contains all behaviours of all systems;

– the unique morphism (X, ξ)→ (Z, ζ) assigns to each x ∈ X its behaviour.

• The final system gives rise to the definition and proof principle of coinduction.

In case you want to get more familiarity with the notions of behaviour, morphism, and
final system you can try the following

Exercise 1.2.20. We have seen the following signatures. (Recall that 1 denotes a one-
element set. Also note, that we overloaded the notations 1 and A: Both denote a set, but
also the corresponding constant operation mapping any set to 1, respectively A. Id denotes
the identity operation.)

Σ ΣX Process

1 1 stop

A A outputs a ∈ A once

Id X metronome (running forever)

A×− A×X stream over A

A×−+ 1 A×X + 1 finite or infinite list over A

The example of streams has been discussed in detail. For (some or all of) the other cases do
the following:

1. Choose an appropriate notion of morphism for each Σ.

2. What processes then, according to Definition 1.2.12, are behaviourally equivalent?

3. Does this notion of behavioural equivalence agree with what you would expect?

4. Describe the system of all behaviours. Check that it is the final system.

1.3 An Extended Example: Deterministic Automata

We first show how we can deal with inputs and then go through the the theory of systems
presented in the previous section by means of the example of deterministic automata. In
particular, we show that the languages accepted by deterministic automata constitute the
final deterministic automata.

1.3.1 Systems with Input

We have seen systems that can output elements or stop. To model automata we need to be
able to deal with input. To begin with, suppose we want to model a system

X × I → X

1.3. AN EXTENDED EXAMPLE: DETERMINISTIC AUTOMATA 17

which only allows to input elements of I. The problem here is that we agreed in the beginning
of this chapter to describe systems by functions of the kind

X → . . .

and not of the kind3

. . .→ X.

Here, a little well-known trick called currying comes to help: Given

f : X × I → X,

f(x,−) is a function I → X for each x ∈ X. It follows that f(−,−) is function from X to
the functions I → X. In order to express this succinctly, we use the following

Notation 1.3.1. Given sets I,X denote by XI the set of functions I → X.

By the discussion above, we now write functions

X × I → X

as functions

X → XI

which are in the form we chose to express systems.

1.3.2 Moore and Mealy Automata

Deterministic automata are used in different ways. For example, to define the language of
finite words accepted by an automata. In this case we should say that the behaviour of an
automaton is its accepted language. This is pursued in the next subsection. Here we are
interested in viewing automata as systems possibly running forever. Therefore, similar to
the example of streams, we will describe the behaviour of an automata as the tree of all its
infinite runs.

Suppose we are given the following data

input alphabet I

output alphabet O

set of states X

initial state x0

then a process (X, ξ, x0) given by

X
ξ−→ O ×XI

is a deterministic automaton (so-called Moore automaton): for each state x ∈ X, ξ(x) =
(o, δx) where o is the output in state x and δx : I → X is the function determining on input
from I the next state.

3Functions of the kind . . .→ X will appear again in section 2.3 as algebras.

18 CHAPTER 1. SYSTEMS – AN INTRODUCTION

t(a)
t(b)

t(<>)

t(ba) t(bb)t(aa) t(ab)

a

a b

b

ba

Figure 1.1: Part of a tree t : {a, b}∗ → O

What is the right notion of morphism for Moore automata? In order to give a definition,

we decompose functions X
ξ−→ O ×XI into two functions

out : X → O

next : X × I → X
(1.8)

and then say that f : X → X ′ is a morphism (X, ξ)→ (X ′, ξ′) iff

out ′(x) = out(x)

next ′(f(x), i) = f(next(x, i))

What is the behaviour of a Moore automata? It is an infinite tree where branches
are sequences of inputs and nodes are labeled with outputs, or, more formally, a function
t : I∗ → O (I∗ denoting the set of all finite words over I). Figure 1.1 shows part of such a
tree in the case that I = {a, b}.
Exercise 1.3.2.

1. Give a formal definition of Beh(x0) similar to the one for streams in Definition 1.2.4.
[Hint: Define an auxiliary function dvips∗ : X × I∗ → X extending dvips from letters
to words.]

2. Show that behaviours are invariant under morphisms.

In order to describe the system of all behaviours, we have to equip the set Z of all trees
t : I∗ → O with a transition structure. For this note that the subtree of t obtained along an
edge i is given by the tree t′ : I∗ → O

t′ = λw.t(i · w)

1.3. AN EXTENDED EXAMPLE: DETERMINISTIC AUTOMATA 19

where · denotes concatenation of words and the λ-notation is used to indicate the argument
of the function. Therefore, the final system (Z, ζ) is given by Z = OI

∗
and

out(t) = t(〈〉)
dvips(t) = λi.λw.t(i · w))

(1.9)

Exercise 1.3.3. Show that (Z, ζ) is indeed the final system.

Before we come to examples of definitions and proofs by coinduction in the next subsection,
we first define an appropriate notion of bisimulation. Given (X, ξ), (X ′, ξ′), we call R ⊂ X×X ′
a bisimulation for Moore automata iff

x R x′ ⇒ out(x) = out ′(x′)

x R x′ ⇒ dvips(x)(i) R dvips′(x′)(i) for all i ∈ I

Exercise 1.3.4. Show that two Moore automata are related by a bisimulation iff they are
behaviourally equivalent (compare Proposition 1.2.15).

Exercise 1.3.5 (Mealy automata). In Mealy automata outputs depend not only on the
current state but also on the input.

1. Modify the signature of a Moore automaton in such a way that outputs depend on the
current state and on the input.

2. Define morphisms of Mealy automata.

3. Describe the behaviour of a Mealy automata [Hint: look for a tree I+ → O (I+ is
I∗ − {〈〉} where 〈〉 denotes the empty word).]

4. Give a transition function for the system of all behaviours of and show that this system
is final.

1.3.3 The Final Automaton of all Languages

Consider a Moore automata with O = 2 a two element set:

X
ξ−→ 2×XI

Denoting the elements of 2 by true and false, we say that x ∈ X is a final or accepting state
iff

out(x) = true

We have thus obtained the usual notion of a deterministic automata except from the fact that
we put no restriction on the set of states X or the set of inputs I to be finite.

How does our notion of behaviour relate to the language accepted by an automaton? We
have seen that for x0 ∈ X

Beh(x0) : I∗ → 2.

20 CHAPTER 1. SYSTEMS – AN INTRODUCTION

is a function mapping finite words to true or false, hence a predicate on words. We can
therefore, equivalently, think of Beh(x0) as the set of words

L(x0) = {w ∈ I∗ : Beh(x)(w) = true}

which is nothing but the language accepted by (X, ξ, x0).

It follows that the set of all languages is the final system of deterministic automata: The
transition structure of the final system (1.9) becomes (let L ⊂ I∗, i ∈ I)

out(L) = (〈〉 ∈ L)

dvips(L)(i) = {w : i · w ∈ L}

Writing L ↓ for the proposition ‘〈〉 ∈ L’ and Li for {w : i ·w ∈ L} the transition structure on
the final system of all languages can be written succinctly as

L ↓
Li for all i ∈ I

(1.10)

(1.10) gives us a convenient notation for the use of coinduction. For example we can give
coinductive definitions of union

(L+K) ↓ iff L ↓ or K ↓
(L+K)i = Li +Ki

sequential composition

(LK) ↓ iff L ↓ and K ↓

(LK)i =

{
LiK if not L ↓
LiK +Ki if L ↓

and Kleene star

L∗ ↓ iff true

(L∗)i = LiL
∗

Finally we illustrate the coinduction proof principle. First note that R is a bisimula-
tion iff

L R K ⇒ (L ↓ ⇔ K ↓)
L R K ⇒ Li R Ki for all i ∈ I

For a first example we want to show

{〈〉}+ LL∗ = L∗. (1.11)

1.4. MORE EXAMPLES 21

Immediately from the definitions, we obtain

({〈〉}+ LL∗) ↓ iff L∗ ↓

and (using LiL
∗ + LiL

∗ = LiL
∗ in case L ↓)

({〈〉}+ LL∗)i = (L∗)i

showing that both sides of the equation (1.11) are bisimilar and hence equal.

Exercise 1.3.6. Show that

1. K + ∅ = K,

2. K +K = K.

For a second example try to show

K(L+M) = KL+KM.

You will see that we cannot proceed as in the first example but have to find a bisimulation.
Try to find an appropriate bisimulation!

Exercise 1.3.7. Show that {(K(L+M) +N,KL+KM +N) : K,M,L,N ⊂ I∗} is a bisim-
ulation.

1.4 More Examples

You can skip this section or return later to it, but you should think briefly about morphisms
for transition systems, see exercise 1.4.3.

1.4.1 Objects and Classes

In object-oriented programming procedures are called methods. Writing X for the state-space
of an object, the type of a method m is of the form

m : X × I → E +O ×X,

meaning that for each state x ∈ X and each input i ∈ I, m(x, i)—usually written as x.m(i)—
either raises an exception in E or yields an output in O and a new state in X.

A class in object oriented programming is given as a set of methods

mj : X × Ij → Ej +Oj ×X (1 ≤ j ≤ n)

which can be written as

mj : X → (Ej +Oj ×X)Ij (1 ≤ j ≤ n).

Since functions fj : X → Yj , (1 ≤ j ≤ n), are nothing else than a single function 〈f1, . . . fn〉 :
X →

∏
1≤j≤n Yj , we define the signature of the class to be

22 CHAPTER 1. SYSTEMS – AN INTRODUCTION

ΣX =
∏

1≤j≤n
(Ej +Oj ×X)Ij

and an implementation to be a system

X
〈m1, . . .mn〉- ΣX.

The main reason why this view of classes as systems is attractive, is that it naturally takes
into account that objects are encapsulated: The only way to access an object is via one of
the methods. Therefore, there is for each class a notion of behavioural equivalence which
expresses that two objects are equivalent iff they cannot be distinguished by applying the
methods to them. This notion of behavioural equivalence coincides with the one given by the
final system.

Exercise 1.4.1. Assume a class with one method m : X × I → E + O × X. Describe the
final system. [Hint: Similar to Equations (1.9), consider trees I∗ → (E + O) but be careful
proving the uniqueness part.]

1.4.2 Datatypes

Traditionally, datatypes are defined by constructors as initial algebras. Then further opera-
tions are defined by induction. For an example consider the following specification of stacks
over elements in A.

spec STACK

constructors

new : 1→ stack

push : A× stack→ stack

operations

〈top, pop〉 : stack→ A× stack + 1

axioms

〈top(new), pop(new)〉 = ∗
〈top(push(a, s)), pop(push(a, s))〉 = 〈a, s〉

new gives an empty stack and push then allows to construct new stacks from old. That stacks
are to be considered elements of the initial algebra given by new and push—ie the initial
algebra semantics of stacks—means that

• only data which can be constructed by new and push is considered to be a stack (the
datatype contains no junk) and

• whenever two stacks are constructed in two different ways from new and push, then
they are different (the datatype has no confusion).

Finally, pop and top are defined inductively from new and push.

There is also a different view on datatypes. We can consider stacks as interacting with an
environment via top and pop. Then two stacks are behaviourally equivalent iff they cannot

1.4. MORE EXAMPLES 23

be distinguished by using only top and pop. Identifying behaviourally equivalent stacks, we
can consider stacks as the elements of the final system given by top and pop and define new
and push coinductively:

spec STACK

observers

〈top, pop〉 : stack→ A× stack + 1

operations

new : 1→ stack

push : A× stack→ stack

axioms

〈top(new), pop(new)〉 = ∗
〈top(push(a, s)), pop(push(a, s))〉 = 〈a, s〉

That stacks are to be considered elements of the final system given by top and pop—ie the
final coalgebra semantics for stacks—means that

• two stacks with the same behaviour are considered to be equal and

• any data being observable with top and pop is considered to be a stack.

Exercise 1.4.2. Think about how the two conditions are related which characterise, re-
spectively, the initial algebra semantics (‘no junk’, ‘no confusion’) and the final coalgebra
semantics. Can you describe this relationship in a formal way?

1.4.3 Transition Systems

Of course, all of the previous examples can be understood as special cases of transition
systems. But usually transition systems allow for non-determinism, a feature that was not
present so far.4 As it is often the case, non-determinism can be modeled by the use of the
powerset operation. Let us denote by PX the set of subsets of X. Then a system

ξ : X → PX

maps each x ∈ X to a set ξ(x) ⊂ X. Interpreting ξ(x) as the set of successors of x, we see
that (X, ξ) is a transition system.

What are the observations that can be made of such a system? From our discussion of
section 1.1 we expect an observer to be able to count transitions. In particular, an observer
can detect termination (no transition possible).5 But it is less clear whether an observer

4Note that the operator + does not introduce non-determinism: Systems like eg X → A × X + 1 or
X → X + X are deterministic.

5There is a hidden assumption here, namely that distinguishability is symmetric. For more sophisticated
notions of observations see eg Vickers [68].

24 CHAPTER 1. SYSTEMS – AN INTRODUCTION

should be able to distinguish between different branching structures as eg in

• - • - • • - •

•

-

• - •

-

• -
-

• •
-

There are different possibilities here. But is there some kind of canonical choice? In sec-
tion 1.2.4 we made the observation that two processes are behaviourally equivalent iff they
can be identified by some morphisms. This suggests that we could try to find the appropriate
notion of behaviour by finding the appropriate notion of morphism. The following exercise
shows that, again, there are several possibilities. In particular, not all reasonable notions of
morphism lead to a useful notion of behaviour.

Exercise 1.4.3. Given a system X
ξ−→ PX, we think of it as a graph (X,R), R ⊂ X ×X

(let x R y ⇔ y ∈ ξ(x)). Accordingly, it is natural to consider graph morphisms f : (X,R
)→ (X ′, R′) as system morphisms. Graph morphisms are functions f : X → X ′ such that

x R y ⇒ f(x) R f(y).

1. Using Definition 1.2.12, characterise behaviours of graphs. What is the final graph?

2. What goes wrong? Can you modify the notion of a graph morphism in such a way that
Definition 1.2.12 becomes more interesting?

In chapter 2 we will see that the notion of a coalgebra provides us automatically with an
appropriate notion of morphism and behaviour for transition systems.

We finish this section by giving some more examples of transition systems. Imagine that
we want the system to be able to output information. Then a system is given by a function

〈ξ, v〉 : X → PX × C

where ξ : X → PX is a system as before and v : X → C assigns a c ∈ C to each state x.

In the previous example, we labeled the states via a function v : X → C. We can also
label the transitions with ‘actions’ a ∈ A

ξ : X → P(X ×A)

Processes (X, ξ, x) for the signature ΣX = P(X × A) are processes in the sense of Milner’s
CCS or process algebra.

1.5 Summary of Examples

In the previous examples we have seen how to model certain features that systems may have
by choosing the appropriate signature. Table 1.1 gives a summary.

The examples we have seen so far were motivated by research areas where systems can
usefully be modeled by coalgebras. Table 1.2 gives an overview and pointers to the literature
where more references may be found.

1.5. SUMMARY OF EXAMPLES 25

the feature how to model it typical system and process

output O ×− X → O ×X stream

input (−)I X → (O ×X)I deterministic automaton

exceptions, errors E +− X → (E +O ×X)I object (one method)

multiple methods −×− X
〈m1,m2〉−→ Σ1X × Σ2X

object with two methods
of types Σ1,Σ2

nondeterminism P X → P(Act ×X) '
X → P(X)Act

as in Milner’s CCS
or in process algebra

Table 1.1: How to Model . . .

the application area some literature

automata theory [25, 55]

(behavioural) differential equations [59]

control theory [58]

object oriented programs [24]

(algebraic) specification [49, ?, 32]

process algebra [1, 65]

probabilistic transition systems [13, 71]

modal logic see Chapters 4, 5

Table 1.2: Application Areas for Coalgebras

26 CHAPTER 1. SYSTEMS – AN INTRODUCTION

1.6 Exercises and Problem

Exercise 1.6.1 (Contexts). If we think of the environment as performing experiments on
processes, the behaviour of a process x should be determined by knowing the outcome of
each experiment performed on x. In the case of streams ΣX = A×X this can be formalised
as follows. An experiment is a ‘term with a hole’ head(tailn(−)), often called a context.
Performing the experiment on x consists of plugging x into the term and looking for the
outcome. The set of possible outcomes is A.

1. Give a transition structure on the set of functions from experiments to outcomes and
show that it is the final coalgebra.

2. Do the same for deterministic automata.

Problem 1.6.2. Try to find out for which signatures the final coalgebra can be described as
the set of functions from experiments to outcomes (as in the exercise above).

Exercise 1.6.3 (Minimal realisation of automata). In Section 1.3 we have described deter-
ministic automata as processes for the signature Σ = O × IdI . In automata theory, one is
often interested in finding the minimal automata realising a behaviour t : I∗ → O. Show that
the description of automata as systems trivialises the existence of a minimal realisation: The
minimal automaton realising the behaviour t : I∗ → O is just the smallest subsystem of the
final system generated by t.

The next exercise shows that for non-deterministic systems there is no essential difference
between inputs and outputs (as long as the parameter A is kept fixed).

Exercise 1.6.4. Give a bijection between P(A×X) and (PX)A. 6

1.7 Notes

Although known and studied before, the current interest in coalgebras goes back to Peter
Aczel’s book [1] “Non-well founded set theory” where he gives a description of the final
system for the signature P(A×−) and a final semantics for processes in the sense of Milner’s
CCS. In particular, he recognised that the behavioural equivalence given by the final system
is the bisimilarity as known from process theory. Then Aczel and Mendler [2] showed that
final coalgebras exist under rather general circumstances. The research inspired by the view
of coalgebras as systems was then continued in eg [61, 56, 62, 65]. The idea of universal
coalgebra as a general theory of system is due to Rutten [57, 60]. The example of merging
streams in Section 1.2.8 is taken from [30]. For a recent study of and further references on
coinduction see Bartels [9].

The example of deterministic automata as coalgebras was studied in Rutten [55]. Classes
in the sense of object-oriented programming as final coalgebras are due to Reichel [47] and
Jacobs [26]. The idea of specifying datatypes only up to behavioural equivalence goes back
to Reichel, see eg [46]. For recent work on behavioural specifications based on the duality of
algebras and coalgebras see [37, 11].

For supplementary introductions to systems and coalgebras see Gumm [18], Jacobs and
Rutten [30], Rutten [60].

6It should also be checked that the bijection is natural in X, see the Appendix for a definition of natural
transformations.

Chapter 2

Coalgebra

We first show that by considering signatures as functors, we can deal in a uniform way with
all the examples of the previous chapter. Second, we present some general ways to construct
new coalgebras from old ones. Third, (equational specifications of) algebras are reviewed.
Finally, duality of algebras and coalgebras is discussed.

2.1 Coalgebras

Looking back at the previous chapter, we see that the theory of systems we presented was
almost uniform in all signatures. The only thing that had to be invented separately for each
new signature was the notion of morphism. It is therefore a natural question to ask whether
we can modify the definition of a signature in such a way that it includes in a natural way
the right notion of morphism. This is indeed the case: We just have to require the signature
to be a functor.

The other move we make is from an operation (or functor) on sets to a functor on arbitrary
categories. The main reason for us to do this is that it is necessary to make precise the duality
of modal and equational logic in chapter 5.1

Moreover, in building a theory it often pays to use only those assumptions which are really
needed. Category theory allows us to formulate these assumptions in a succinct way. As a
consequence, we obtain more general results, simpler (and reusable) proofs, and new insights
in why certain results hold.

Finally, let us mention that the use of categories does not create too many new difficulties:
Although it is important to note that notions like coproduct, quotient, embedding, and union
of images can be defined without using set theory, one can (and should) think in terms of the
corresponding notions familiar from sets.

Definition 2.1.1. Given a category X , called the base category, and a functor Σ : X → X ,
a Σ-coalgebra (X, ξ) is given by an arrow ξ : X → ΣX in X . A morphism between two

1As will be explained later, algebras over Set are dual to coalgebras over Setop. Hence, in order to use
duality, we have to work in a setting allowing not only coalgebras over Set but also over Setop. The cleanest
way to do this is to set up the theory for coalgebras over arbitrary categories X .

27

28 CHAPTER 2. COALGEBRA

coalgebras f : (X, ξ)→ (X ′, ξ′) is an arrow f in X such that ξ′ ◦ f = Σf ◦ ξ:

X
ξ - ΣX

X ′

f

?

ξ′
- ΣX ′

Σf

?

The category of coalgebras and morphisms is denoted by Coalg(Σ).

We will explain in more detail what in means for the signature to be a functor. Assume
X = Set. Then we extend the signatures we have seen so far to functors as follows (let C ∈ Set
and f : X → Y ∈ Set):

Σ ΣX Σf

C C idC : C → C

Id X f

(−)C XC fC : XC → Y C

g 7→ f ◦ g

As we did earlier, we overloaded notation by denoting with C the set as well as the constant
functor mapping any set to C. idC denotes the identity map on C and XC is function space.

As we have seen before, from these functors, we can build more interesting ones, using ×
and +, like eg ΣX = (E+A×X)I . To make this precise, we note that × and + are functors
as well. There action on functions f1 : X1 → Y1, f2 : X2 → Y2 is the following:

−+−
f1 + f2 : X1 +X2 → Y1 + Y2

x ∈ X1 7→ f1(x)

x ∈ X2 7→ f2(x)

−×− f1 × f2 : X1 ×X2 → Y1 × Y2

〈x1, x2〉 7→ 〈f1(x1), f2(x2)〉

It is perhaps not worth looking at these definitions in detail. There are no reasonable alterna-
tives anyway. But these definitions show that any expression build from constants, identity,
exponentiation with a constant, +, and × gives rise to a functor (this is due to the fact that
the composition of functors is a functor). To understand how these functors act on functions,
do the following

2.1. COALGEBRAS 29

Exercise 2.1.2. Check that for Σ = A × Id and Σ = O × IdI the coalgebra morphisms of
Definition 2.1.1 agree with the system morphisms of Definition 1.2.3 and of (1.8) in Chap-
ter 1.3.2, respectively. Describe the morphisms for “classes” with signatures (E + O × Id)I ,
see Chapter 1.4.1.

Next, we show that the notion of coalgebra morphism also helps us to find the morphisms
of transition systems, ie for signatures involving P. Remember that the first idea that came
to our mind in Exercise 1.4.3 did not give rise to a reasonable notion of behaviour. But, as
for the signatures discussed above, there is one obvious way to extend P to functions, namely
as direct image:

Σ ΣX Σf

P {W : W ⊂ X} Pf : PX → PY
W 7→ f(W) = {f(x) : x ∈W}

We next characterise morphisms of P-coalgebras. Recall that we can write a P-coalgebra
(X, ξ) as (X,R) with R ⊂ X ×X and x R y ⇔ y ∈ ξ(x).

Proposition 2.1.3. Let (X,R) and (X ′, R′) be two P-coalgebras. A function f : X → X ′ is
a P-coalgebra morphism iff

x R y ⇒ f(x) R′ f(y) (2.1)

f(x) R′ y′ ⇒ ∃y ∈ X . x R y & f(y) = y′ (2.2)

Proof. The commuting square defining coalgebra morphisms translates into the condition
that for all x ∈ X it holds {y′ : f(x) R′ y′} = {f(y) : x R y}. “⊃” is (2.1) and “⊂” is
(2.2).

Note that (2.1) says that f is a graph morphism. It expresses that (X ′, R′, f(x)) simulates
(X,R, x). (2.2) is the converse stating that (X,R, x) simulates (X ′, R′, f(x)). The following
is therefore no surprise but should be checked for once nevertheless.

Exercise 2.1.4. Let Σ be P or P(A×−) and (X, ξ), (Y, η) two Σ-coalgebras. Then x ∈ X
and y ∈ Y are behaviourally equivalent (Definition 1.2.12(1)) iff they are bisimilar in the
usual sense of modal logic or process algebra (Definition 4.2.1).

To summarise, we have seen that the signatures discussed in Chapter 1 give rise to functors
and that, therefore, the systems of Chapter 1 are coalgebras.2 In particular, the general theory
of systems outlined in Chapter 1 is now uniformly available to all categories of coalgebras
over sets.

2This reflects a general experience: All interesting signatures seem to give rise to functors. But not every
operation can be extended to a functor, see the exercises.

30 CHAPTER 2. COALGEBRA

2.2 Basic Constructions on Coalgebras

Not all constructions we want to perform on systems are universal in the sense that they
can be made in a uniform way for all signatures. For example, if we want to make systems
communicate, we usually need to know the specific signature. On the other hand, some simple
but important constructions are universal.

2.2.1 Coproducts

Intuitively, it is clear that we can form the disjoint union of two systems just by forming the
disjoint union of the carriers and using each transition-function for each component. This
seems so obvious that it might be worth to look at

Exercise 2.2.1. Is it possible to have a disjoint union for algebras? (Take any familiar ex-
ample like perhaps monoids or groups. Or use stacks with operations new and push as in
Chapter 1.4.2.)

The general construction of a coproduct of coalgebras is as easy as the informal description
given above. Let Σ : X → X and suppose that for a family (Xi, ξi)i∈I of Σ-coalgebras the
coproduct

∐
I Xi of the carriers exists. Then the coproduct (

∐
I Xi, ξ) of the coalgebras is

given by

∐
I

Xi
ξ
- Σ(

∐
I

Xi)

Xi

ini

∪

6

ξi - ΣXi

Σini
6

where ξ exists due to the universal property of the coproduct in X . That is, the coproduct
of coalgebras is given and completely determined by the coproduct of the carriers.

Exercise 2.2.2. Apply the construction above to the signature P.

2.2.2 Quotients and Subcoalgebras

This section deals with quotients and subcoalgebras. We first describe quotients and subcoal-
gebras for the case X = Set and then introduce factorisation systems to deal with the general
case.

We say that a coalgebra morphism e : (X, ξ) → (X ′, ξ′) is a quotient iff e is surjective.
We also call (X ′, ξ′) a quotient or (homomorphic) image of (X, ξ). We say that m : (X ′, ξ′)→
(X, ξ) is a subcoalgebra or embedding iffm is injective. We also call (X ′, ξ′) a subcoalgebra
of (X, ξ).

The following proposition shows that the transition-structure on a quotient (X ′, ξ′) is
completely determined by the structure on (X, ξ).

Proposition 2.2.3. Let Σ : Set→ Set, (X, ξ), (X ′, ξ′), (X ′, ξ′′) be Σ-coalgebras and e : X →
X ′ surjective. If e is a morphism (X, ξ) → (X ′, ξ′) as well as a morphism (X, ξ) → (X ′, ξ′′)
then ξ′ = ξ′′.

Proof. Follows from e being epi.

2.2. BASIC CONSTRUCTIONS ON COALGEBRAS 31

Similarly, the structure on a subcoalgebra (X ′, ξ′) is completely determined by the struc-
ture on (X, ξ).

Proposition 2.2.4. Let Σ : Set→ Set, (X, ξ), (X ′, ξ′), (X ′, ξ′′) be Σ-coalgebras and m : X ′ →
X injective. If m is a morphism (X ′, ξ′) → (X, ξ) as well as a morphism (X ′, ξ′′) → (X, ξ)
then ξ′ = ξ′′.

Proof. If X ′ is not empty, then Σm is injective, hence mono, hence ξ′ = ξ′′. If X ′ is empty
then ξ′ = ξ′′ because the only map with empty domain is the empty map.

As mentioned already, to establish the duality of modal and equational logic, we cannot
restrict our attention to the base category Set. Unfortunately, there is no categorical gener-
alisation of the set-based notions surjective and injective which is appropriate in all settings.
But it turns out that for the purpose of this lecture (and in many other circumstances as
well) we only need the following properties of quotients and embeddings.

Definition 2.2.5 (Factorisation system). Let C be a category and E,M be classes of arrows
in C. We call arrows in E quotients, arrows in M embeddings, and (E,M) a factorisation
system in C iff

1. f ∈ E and f ∈M implies f iso.

2. E,M are closed under composition.

3. Every arrow f in C has a factorisation f = m ◦ e for some m ∈ M and e ∈ E. We call
m the image of f and e the kernel3 of f .

4. Factorisations are given up to unique isomorphism, ie for all e, e′ ∈ E and all m,m′ ∈M
as in the diagram

•
e - •

•

e′

?

m′
-�...

....
....

....
....

....
....

....
..

h

•

m

?

there is a unique isomorphism h making the triangles commute.

The use of the letters E and M derives from the fact that in most applications of factorisation
systems arrows in E are epi and arrows in M are mono. For example in Set is (Epi ,Mono) =
(Surj , Inj) a factorisation system.

The most important property of factorisation systems is the following:

3The kernel of a function f : X → Y is usually defined as Ker f = {(x1, x2) : f(x1) = f(x2)}. Since Ker f
describes the quotient part of the factorisation of f up to unique isomorphism, it seems justified to use ‘kernel’
for the quotient part of a factorisation in general.

32 CHAPTER 2. COALGEBRA

Proposition 2.2.6 (Unique diagonalisation). Let (E,M) be a factorisation system in C. For
any commuting square

•
e
- •

•

l

?

m
-�...

....
....

....
....

....
....

....
...

d

•

r

?

with m ∈M and e ∈ E, there is a unique diagonal d making the triangles commute.

Proof. (The proof is technical and can be skipped.) Factoring l = ml ◦ el and r = mr ◦ er
gives a unique isomorphism h in the left-hand diagram

•
e- • •

e - •

•

el
?
�
h

•

er
?

•

el
?
�h2 • �

h1

�

e d

•

er
?

•

ml

?

m
- •

mr

?
•

ml

?

m
-�

m
d

•

mr

?

Then ml ◦ h ◦ er is a diagonal as required. To show uniqueness consider any diagonal d (ie
d ◦ e = l and m ◦ d = r). Factoring d = md ◦ ed gives unique isos h1, h2 with ed = h1 ◦ er and
md = ml ◦ h2. Since h2 ◦ h1 must be h, it follows d = ml ◦ h ◦ er.

The unique diagonalisation property is often useful in order to arrows d. We will need it
in Chapter 5. For a first example we show that over Set every coalgebra morphism factors as
a surjective and an injective one and that this factorisation is calculated as the factorisation
in Set:

Proposition 2.2.7. Let Σ : Set→ Set, f : (X, ξ)→ (Y, η) a Σ-morphism, and X
e−→ X ′

m−→
Y an (Surj , Inj)-factorisation of f in Set. Then there is a unique function ξ′ : X ′ → ΣX ′

making e and m into coalgebra morphisms.

Proof. Consider the diagram

X
e - X ′

m - Y

ΣX

ξ

?

Σe
- ΣX ′

ξ′

?

.................

Σm
- ΣY

η

?

In case that X ′ is not empty, we know that Σm is injective (Exercise A.0.2) and we can use
unique diagonalisation. The case X ′ empty works as usual (see the proof of Proposition 2.2.4).

2.2. BASIC CONSTRUCTIONS ON COALGEBRAS 33

Note that already in this case the argument by unique diagonalisation is easier than a direct
proof going back to the element-wise definition of the image X ′ of f .

As a corollary note that the surjective and injective morphisms form a factorisation system
in Coalg(Σ):

Corollary 2.2.8. Let Σ : Set → Set and denote by Surj and Inj the class of surjective and
injective Σ-morphisms. (Surj , Inj) is a factorisation system in Coalg(Σ).

Proof. Existence of factorisations was shown in the proposition. To see that factorisations
are unique up to iso let (X, ξ), (Y1, ν1), (Y2, ν2), (Z, ζ) ∈ Coalg(Σ) and consider the left-hand
diagram

X
e- Y1 ΣX

Σe- ΣY1
Σh- ΣY2

Y2

e′

?

m′
-

�...
....

....
....

..

h
Z

m
?

X

ξ
6

e
- Y1

ν1
6

h
- Y2

ν2
6

There is a unique iso h. To see that h is a coalgebra morphism we use the following standard
argument. Consider the right-hand diagram above. We know that the left square and that
the outer rectangle commute (since e and e′ = h ◦ e are coalgebra morphisms). Since e is
surjective (hence epi), the right-hand square also commutes.

Finally, the following proposition summarises what we have shown about factorisation
systems in case the base category is not Set (the proofs remain unchanged).

Proposition 2.2.9. Let (E,M) be a factorisation system in X and Σ : X → X . Assume that
arrows in E are epi and that Σ preserves arrows in M .4 Let E′, M ′ be the coalgebra morphisms
which are in E, M , respectively. Then (E′,M ′) is a factorisation system in Coalg(Σ).

2.2.3 Unions

The perhaps most important construction for us is ‘union of subcoalgebras’. To explain the
interest, suppose we have a system and a property ϕ on its states and we want to know the
largest subcoalgebra whose states all satisfy ϕ. In case that the union of subcoalgebras exists
we can take the union of all subcoalgebras satisfying ϕ.

We first deal with the case X = Set. Suppose we are given a family of coalgebra morphisms
(si)i∈I

(Xi, ξi)
si- (X, ξ)

and we want to describe the union of the images of the si. It should be obvious that a union
of the images of the si, if it exists, has to be given by a factorisation si = m ◦ ei

(X, ξi)
ei- (X ′, ξ′)

m- (X, ξ)

4Σ preserves arrows in M iff m ∈M ⇒ Σm ∈M .

34 CHAPTER 2. COALGEBRA

such that m is injective and the ei are collectively surjective (ie for each x′ ∈ X ′ there is
i ∈ I and x ∈ Xi such that e′i(x) = x′). This determines the union of images up to unique
isomorphism and we write

(X ′, ξ′) =
⋃
{Im(si) : i ∈ I}.

We show that coalgebras over sets have union of images.

Proposition 2.2.10. Let Σ : Set→ Set. Then Coalg(Σ) has union of images.

Proof. Let (si : Ai → A)i∈I be a family of morphisms in Coalg(Σ). The idea is to construct
unions as disjoint unions (coproducts) followed by a quotient. But we have to be a bit careful
since

∐
I Ai may not exists since I is allowed to be a proper class. Let

Ai
ei−→ A′i

mi−→ A

be a (Surj , Inj)-factorisation of each si. Since A has—up to isomorphism—only a set of
subcoalgebras there is a subset J ⊂ I and a function f : I → J choosing for each A′i, i ∈ I,
an isomorphic subcoalgebra A′f(i). Moreover, there are morphisms e′i : Ai → A′f(i) such that

si = mf(i) ◦ e′i. Since J is a set the coproduct inj : A′j →
∐
j∈J A

′
j exists. Now consider

∐
J

A′j
e - A′

Ai
e′i - A′f(i)

inf(i)
6

mf(i)- A

m

?

...........g-

(2.3)

where g is given by the universal property of the coproduct and m ◦ e is the (Surj , Inj)-
factorisation of g. It follows that the si have a factorisation m ◦ (e ◦ inf(i) ◦ e′i). Observing
that (e ◦ inf(i) ◦ e′i)i∈I is collectively surjective finishes the proof.

For the general case, we note that in the proof of the proposition above we can replace
Coalg(Σ) by any category C which has a factorisation system, coproducts, and for each A ∈ C,
up to isomorphism, only a set of embeddings.5 For the purposes of this course, the following
definition will be convenient:

Definition 2.2.11 (Union of images). We say that a category C with a factorisation system
has union of images iff C has coproducts and for each A ∈ C, up to isomorphism, only a set of
embeddings A′ → A. Union of images are then given as quotients of coproducts as in (2.3).

A more general notion of union of images can be given using factorisation systems for sinks,
see Adámek, Herrlich, Strecker [3], Chapter 15 and [32] for their application to coalgebras.

Unions of images have a diagonalisation property which is similar to the one for factori-
sation systems:

5The technical term for this last condition is that C is wellpowered.

2.2. BASIC CONSTRUCTIONS ON COALGEBRAS 35

Proposition 2.2.12. Let (E,M) be a factorisation system in a category C which has union
of images. Let n ◦ ei be the union of the images of a family si. Then if for m ∈ M , f ∈ C,
and a family ti in C, the square

Ai
ei - B

C

ti

?

m
-

�...
....

....
....

....
....

....
....

.

d

D

f

?

commutes for all i then there is a unique diagonal d making the triangles commute.

Proof. Redraw the square above with ei = e◦ inf(i) ◦e′i as in (2.3). Then use unique diagonal-
isation for factorisation systems (2 times) and the universal property of the coproduct.

2.2.4 Final and Cofree Coalgebras

We have seen in Chapter 1.2 that final coalgebras play an important role because they classify
processes up to behavioural equivalence. Cofree coalgebras do the same, but allow the envi-
ronment additional observations called colourings. We first take the time to discuss colourings
in some detail and then explain cofree coalgebras.

Given a coalgebra X
ξ−→ ΣX and a set ‘of colours’ C, a colouring of (X, ξ) in C is a

function X
c−→ C. c is simply a marking or labeling of the states. Its import is that we

can use colourings c to make additional observations. Consider eg the Pω-coalgebra (Y, η, y0)
given by

y0

y1
�

y2

-

Here, the two states y1, y2 are behaviourally equivalent for an external observer. But allowing
colourings c : Y → C, C = {c1, c2}, an external observer can distinguish y1, y2 by choosing a
colouring with eg c(y1) = c1 and c(y2) = c2.

That is, allowing colourings increases the observational power of the environment. If we
want to stay with our basic paradigm that two elements cannot be distinguished by an external
observer iff these elements cannot be identified by some morphisms (see Observation 1.2.7),
we need to require morphisms to respect colourings. This gives rise to a new category of
coalgebras with colourings:

Definition 2.2.13 (Coalg(Σ, C)). Let Σ : X → X and C ∈ X . Coalg(Σ, C) is the category
having objects

(X
ξ−→ ΣX , c : X → C)

where X
ξ−→ ΣX is a Σ-coalgebra and c : X → C an arrow in X . We call these objects (Σ, C)-

coalgebras and denote them by ((X, ξ), c) or (X, ξ, c). A (Σ, C)-morphism f : (X, ξ, c) →

36 CHAPTER 2. COALGEBRA

(X ′, ξ′, c′) is a Σ-morphism (X, ξ)→ (X ′, ξ′) such that

X
f - X ′

C
�

c
′c -

commutes.

The last condition expresses that (Σ, C)-morphisms preserve colours.

We can now define cofree coalgebras

Definition 2.2.14 (Cofree Coalgebras). A (Σ, C)-coalgebra (ZC , ζC , εC) is called the cofree
Σ-coalgebra over C iff it is final in Coalg(Σ, C). We say that Coalg(Σ) has cofree coalgebras
if cofree coalgebras exists for all C ∈ X .

Usually, we leave εC implicit and call (ZC , ζC) alone the cofree Σ-coalgebra over C. In the
following exercise you are asked to unravel the definition of a cofree coalgebra.

Exercise 2.2.15. Show that (ZC , ζC) is cofree over C iff for all Σ-coalgebras (X, ξ) and all
colourings c : X → C there is a unique Σ-morphism c] : (X, ξ)→ (ZC , ζC) such that

X
c]

- Z

C
� εC

c -

commutes.

The diagram above is not ‘well-typed’ in the sense that two arrows are colourings (from
the base category) and another one is a coalgebra morphism. This can be corrected by
introducing the following

Notation 2.2.16 (Forgetful functor). The forgetful functor is the operation U : Coalg(Σ)→
X mapping a coalgebra to its carrier and a coalgebra morphism f : (X, ξ) → (X ′, ξ′) to
f : X → X ′.

Note that U is indeed a functor. Restating the exercise above using the new terminology
yields a formulation of cofreeness which will be of use in Chapter 5.

Proposition 2.2.17. Let U : Coalg(Σ) → X be the forgetful functor. Coalg(Σ) has cofree
coalgebras iff for each C ∈ X there is a Σ-coalgebra FC and a colouring εC : UFC → C
such that for any Σ-coalgebra A and any colouring c : UA → C there is a unique coalgebra
morphism c] : A→ FC such that the triangle

UFC FC

C �
c

�

εC

UA

Uc]

6

A

c]

6

commutes.

2.3. ALGEBRAS 37

We finish this section with two exercises which should make you familiar with the notions
of (Σ, C)-coalgebra and cofree coalgebra.

Exercise 2.2.18. Give an isomorphism Coalg(Σ, C) ' Coalg(Σ× C) (for any base category
with binary products).

Exercise 2.2.19. Consider three Pω-coalgebras (X, ξ, x0), (Y, η, y0), (Z ′, ζ ′, z0) given by

x0 y0 z0

x1
�

x2

?
x3

-

y1
�

y2

-

z1

?

1. Show that (Z ′, ζ ′) is a subcoalgebra of the final Pω-coalgebra.

2. Show that (X, ξ), (Y, η), (Z ′, ζ ′) are behaviourally equivalent.

3. Say that two processes (X, ξ, x0), (Y, η, y0) are C-behaviourally equivalent iff

• for each colouring c : X → C there is a colouring d : Y → C such that (X, ξ, c, x0)
and (Y, η, d, y0) are behaviourally equivalent and, vice versa,

• for each colouring d : Y → C there is a colouring c : X → C such that (X, ξ, c, x0)
and (Y, η, d, y0) are behaviourally equivalent.

Show that

(a) (Y, η, y0) and (Z ′, ζ ′, z0) are not 2-behaviourally equivalent,

(b) (X, ξ, x0) and (Y, η, y0) are 2-behaviourally equivalent,

(c) (X, ξ, x0) and (Y, η, y0) are not 3-behaviourally equivalent,

where 2 and 3 denote sets of respective cardinality.

2.3 Algebras

This section reviews algebras as far as needed to understand the duality to coalgebras. We also
briefly review the semantics of equations. Some basic familiarity with algebras and equational
logic will be helpful, see eg Wechler [69] for an introduction.

Definition 2.3.1. Given a category X , called the base category, and a functor Σ : X → X , a
Σ-algebra (Y, ν) is given by an arrow ν : ΣY → Y in X . A morphism between two algebras
(Y, ν)→ (Y ′, ν ′) is an arrow f in X such that ν ′ ◦ Σf = f ◦ ν:

ΣY
ν - Y

ΣY ′

Σf

?

ν ′
- Y ′

f

?

The category of Σ-algebras and morphisms is denoted by Alg(Σ). The forgetful functor
U : Alg(Σ)→ X maps algebras (Y, ν) to the carrier Y and morphisms f : (Y, ν)→ (Y ′, ν ′) to
the arrows f : Y → Y ′.

38 CHAPTER 2. COALGEBRA

This notion of algebras for a functor includes algebras defined by operations in the usual
sense. To give examples it is useful to have the following

Notation 2.3.2. A family of functions (fi : Yi → Y)1≤i≤n can equivalently be written as a
single function

Y1 + . . .+ Yn
[f1, . . . , fn]- Y

where as before + denotes disjoint unions of sets and [f1, . . . , fn] is the function which applies
fi to arguments from Yi. (This equivalence is valid in any category with coproducts.)

Example 2.3.3. The following examples show that algebras in the standard sense are alge-
bras for a functor.

1. Consider algebras given by a constant 0 and a unary operation s. The corresponding
functor is ΣY = 1 + Y and a Σ-algebra is given by

1 + Y
[0, s]- Y

2. Consider the following signature for algebras

new : → stack

push : A× stack→ stack

The corresponding functor is ΣY = 1 +A× Y and a Σ-algebra is given by

1 +A× Y
[new, push]- Y

3. Groups (Y, e, (−)−1, ·) are algebras for the functor ΣY = 1 + Y + Y × Y :

1 + Y + Y × Y
[e, (−)−1, ·]- Y.

In the same way, any signature for algebras given by some collection of operation symbols
gives rise to a functor.

A Σ-algebra (I, ι) is initial iff it is initial in Alg(Σ), ie iff for any Σ-algebra (Y, ν) there is
a unique Σ-morphism

(I, ι)→ (Y, ν).

I consists precisely of all terms that can be formed from the operations in the signature. For
example, the natural numbers are the initial algebra for the functor ΣY = 1 + Y (read 0 as
zero and s as successor):

1 + N
[0, s] - N

To say that (N, [0, s]) is initial is equivalent to the principle of induction. To see that
initiality gives rise to induction, recall that defining a function f : N→ Y by induction means

2.3. ALGEBRAS 39

to give a y0 ∈ Y such that f(0) = y0 and a t : Y → Y such that f(s(n)) = t(f(n)), that is,
to give

1 + Y
[y0, t] - Y

such that

1 + N
[0, s] - N

1 + Y

id1 + f

? [y0, t] - Y

f

?

Exercise 2.3.4. Check that the diagram above commutes iff f(0) = y0 and f(s(n)) = t(f(n))
for all n ∈ N.

Exercise 2.3.5. Compare induction with coinduction (see Chapter 1.2.8).

Equations

As shown by the example of groups in Example 2.3.3 (or the example of stacks in Chap-
ter 1.4.2), we often want algebras not to be given only by a signature but also by some
equations as eg

e · x = x

x · e = x

(x · y) · z = x · (y · z)

where x, y, z are variables from some set X.

Although it should be clear what it means for an algebra (Y, ν) to satisfy a set of equations
Φ, we want a precise definition. Since equations are formed from terms, we first need a
description of terms in variables from X. This is provided by the notion of a free algebra over
X.

Definition 2.3.6 (Free algebra). Let Σ : X → X and X ∈ X . The free Σ-algebra over X is
given by an algebra (AX , αX) and an arrow ηX : X → AX such that for each algebra (Y, ν)
and each v : X → Y there is a unique algebra morphism v] : (AX , αX) → (Y, ν) such that
v] ◦ ηX = v:

AX
v]

- Y

X

v

-
�

η
X

We say that Alg(Σ) has free algebras iff for all X ∈ X there is a free algebra over X.

40 CHAPTER 2. COALGEBRA

Remark. In the case X = Set we read this as follows: For a set of variables X there is the
term algebra (AX , αX) which has as a carrier AX all terms formed from operations in Σ and
variables in X. ηX is the inclusion of variables into terms. v is an assignment of variables to
elements of (Y, ν). The condition above now expresses the familiar fact that any assignment
of variables v defines a unique interpretation v] of terms.

Exercise 2.3.7. Compare the definition of free algebras with the characterisation of cofree
coalgebras in Exercise 2.2.15.

We can now say that, in the case X = Set, an equation t = t′ of terms t, t′ in variables
from X is an element of (t, t′) ∈ AX×AX . Satisfaction of equations is then defined as follows.

Definition 2.3.8 (Satisfaction of equations). Let Σ : Set → Set and (AX , αX) a free Σ-
algebra over X. Let (Y, ν) ∈ Alg(Σ) and Φ ⊂ AX ×AX (ie Φ is a set of equations in variables
from X). For an equation (t, t′) ∈ Φ and an assignment v : X → Y define

(Y, ν), v |= (t, t′) iff v](t) = v](t′)

We write (Y, ν) |= Φ and say that (Y, ν) satisfies Φ, or that Φ holds in (Y, ν), iff (Y, ν), v |=
(t, t′) for all (t, t′) ∈ Φ and all assignments v : X → Y .

How the concept of a set of equations can be generalised to arbitrary categories (with factori-
sation system) is shown in Chapter 5.

2.4 Duality

We briefly review categorical duality. A category C consists of a class of objects, also denoted
by C, and for all A,B ∈ C of a set of arrows (or morphisms) C(A,B). The dual (or opposite)
category Cop has the same objects and arrows Cop(A,B) = C(B,A). We write Aop and fop

for A ∈ C and f ∈ C(B,A) to indicate when we think of A as an object in Cop and of f as an
arrow in Cop(A,B). Duality can now be formalised as follows: Let P be a property of objects
or arrows in C. We then say that

an object A (arrow f , respectively) in C has property co-P
iff Aop (fop, respectively) has property P .

For example, an object A is co-initial in C (usually called terminal or final) iff A is initial in
Cop; a morphism f ∈ C(A,B) is co-mono (usually called epi) iff fop is mono; C is a co-product
A+B iff Cop is a product Aop ×Bop. Of particular importance for us is

Exercise 2.4.1. Show that (E,M) is a factorisation system in C iff (M,E) is a factorisation
system in Cop.

The duality principle can also be extended to functors. The dual of a functor F : C → D
is the functor F op : Cop → Dop which acts on objects and morphisms as F does. We can now
state precisely that algebras are dual to coalgebras:

Proposition 2.4.2. Let Σ : X → X . Alg(Σ)op is equivalent to Coalg(Σop).

Proof. The iso maps objects (ΣX
ξ−→ X)op to Xop ξop−→ ΣopXop and is the identity on

morphisms.

2.4. DUALITY 41

Note that the base category X gets dualised as well. To emphasise this trivial but impor-
tant point we state an evident corollary to the proposition:

Corollary 2.4.3. Let Σ : X → X . Then the forgetful functor U : Alg(Σ)→ X is dual to the
forgetful functor Uop : Coalg(Σop)→ X op.

The fact that the base category has to be dualised makes it difficult to exploit the duality
of algebras and coalgebras. For example exercise 2.6.7 shows that Setop is isomorphic to the
category of complete atomic boolean algebras. Therefore, coalgebras over set are isomorphic
to algebras over complete atomic boolean algebras, a fact that seems not very helpful in the
study of coalgebras.

Nevertheless, duality may still be exploited. The idea is to take care that the proofs of
our results do not depend on a specific base category. There are two possibilities.
First, it may be that the properties we are interested in can be formulated in a way such that
they do not depend on the base category at all. Second, if some properties P of the base
category are needed, we are careful to keep track of them. In this way, we are able to obtain
results that hold, say, for all algebras over base categories satisfying P , and all coalgebras
over base categories satisfying co-P . Even if we are only interested in results about algebras
as well as coalgebras over sets, this approach is still useful. For example, Set is wellpowered
and cowellpowered, complete and cocomplete and has a factorisation system.

Coalg(Σ) Alg(Σop)

factorisation system (E,M) factorisation system (M,E)

subcoalgebras quotients

quotients subalgebras

coproducts products

union of images intersection of kernels

final coalgebra initial algebra

cofree coalgebra free algebra

coinduction induction

behaviour reachable part

bisimulation subalgebra (?)

Table 2.1: List of Dualities

Table 2.1 summarises dualities which are interesting for us. The notion of intersection of
kernels is given by the dual of Definition 2.2.11 and will be illustrated in the next section.
Behaviour and reachable part are dual notions: the behaviour of a coalgebra (X, ξ) is given
by the factorisation (X, ξ)

e−→ Beh(X, ξ)
m−→ (Z, ζ) of the unique morphism (X, ξ) → (Z, ζ)

into the final coalgebra (Z, ζ); the reachable part of an algebra (Y, ν) is given by the fac-
torisation (I, ι)

e−→ Reach(Y, ν)
m−→ (Y, ν) of the unique morphism (I, ι) → (Y, ν) from the

initial algebra. Bisimulation and subalgebra are dual notions if we consider the essence of a
bisimulation being to define a quotient on a system.

42 CHAPTER 2. COALGEBRA

To investigate whether this table can be extended to logics for (co)algebras is the purpose
of Chapter 5.

2.5 Extended Example: Limits

This section illustrates the material we have seen so far, namely duality, union of images, and
cofree coalgebras.

We have seen that that colimits of coalgebras are easy (ie calculated as in Set). What
about limits? We will use our intuition on algebras and then duality to provide a solution.

The first step is to describe colimits of algebras. In order to think of something concrete, let
us consider the coproduct of two monoids (Y1, e, ·) and (Y2, e, ·). Clearly, it can not be given
by the coproduct (disjoint union) Y1 + Y2 because, roughly speaking, Y1 + Y2 contains not
enough elements. For example, Y1 + Y2 contains no element which we could consider as the
composition of some y1 ∈ Y1 and some y2 ∈ Y2. Surely, the free algebra over both carriers,
F (Y1 + Y2), contains enough elements (eg y1 · y2). But F (Y1 + Y2) is not the coproduct itself
because it does not satisfy enough equations. For example, if x1 · y1 = z1 in (Y1, e, ·) then
x1 · y1 6= z1 in F (Y1 + Y2) just because it is the free algebra (which means that it satisfies
no equations but those enforced by the monoid axioms). So what we need to find is the
appropriate equations which make the quotient of F (Y1 + Y2) into the coproduct of (Y1, e, ·)
and (Y2, e, ·). But this is easy. Consider two algebra morphisms as in

(Y1, e, ·) F (Y1 + Y2) (Y2, e, ·)

(Z, e, ·)

hf,g

?�

gf
-

Since F (Y1 +Y2) is free, there is a unique algebra morphism hf,g which agrees with f and g on
Y1 and Y2, respectively. The kernel Kerhf,g = {(t, t′) : hf,g(t) = hf,g(t

′)} contains precisely
the equations6 (t, t′) satisfied by (Z, e, ·). Now, in order to find the equations satisfied by the
coproduct we take the intersections of all these kernels: Let

Φ =
⋂
{Kerhf,g : ∃ (Z, e, ·) & f : (Y1, e, ·)→ (Z, e, ·) & g : (Y2, e, ·)→ (Z, e, ·)}

and define the coproduct of (Y1, e, ·) and (Y2, e, ·) as the quotient of F (Y1 + Y2) wrt to the
smallest congruence generated by Φ. Of course, it remains to be checked that this definition
yields indeed the coproduct. If you are interested in the details, dualise the proof below.

The principle of duality now makes us guess that limits of coalgebras must be obtained as
certain subcoalgebras of cofree coalgebras. This idea gives rise to the following theorem and
proof.

Theorem 2.5.1. Let Σ be a functor on Set such that Coalg(Σ) has cofree coalgebras. Then
Coalg(Σ) has all limits and they are constructed as shown in the proof.

6Recall that we write equations as (t, t′) rather than t = t′.

2.5. EXTENDED EXAMPLE: LIMITS 43

Proof. Let D : I → Coalg(Σ) be a diagram in Coalg(Σ). Let ci : L → UDi be a limit of UD
in Set. Consider the cofree coalgebra FL over L with colouring εL : UFL→ L.

UDi �
ci

L �
εL

UFL

UAj

Uf ij

6

Uej
-

Ug
]
j

-

g j

-

UB

Um

6

Let f ij : Aj → Di be a cone for the diagram D. Since L is a limit of UD, there is a unique

gj : UAj → L such that Uf ij = ci ◦ gj . Since FL is cofree, gj lifts to a unique g]j : A → FL

such that εL ◦ Ug]j = gj .

Let {f ij : Aj → Di : j ∈ J} be the class of cones for D. We have seen that every cone

f ij : Aj → Di gives rise to a g]j : Aj → FL. The limit B of D is now the union of images

Aj
ej−→ B

m−→ FL of the family (g]j)j∈J .

To find the limiting cone consider li = ci ◦ εL ◦ Um. Since for all i ∈ I, li ◦ Uej = Uf ij
are morphisms in Coalg(Σ) and the family of morphisms (ej)j∈J is collectively surjective,
it follows that the li : B → Di are coalgebra morphisms. Furthermore, li is a cone for D
because it is a cone for UD which in turn holds because Uf ij is a cone for UD (for all j) and
the (Uej)j∈J are collectively surjective.

To complete the proof we have to show that every cone in Coalg(Σ) over D factors uniquely
through li : B → Di. The existence follows from the definition of B, uniqueness from m being
mono.

Remark 2.5.2. The construction of the limit shown in the proof of the theorem can be used
to obtain detailed information on limits. As an example consider the following coalgebra A
for the (finite) powerset functor:

s0

s1
�

s2

-

(The carrier of A is {s0, s1, s2} and the transition relation is as depicted in the diagram.) You
are invited to use the construction in the proof of the theorem to prove the following remarks
on the product A×A:

• The product A × A is not the largest bisimulation because the product has ‘too many
states’ (the largest bisimulation on A has 5).

• A×A is finite (the construction in the proof of the theorem also allows to calculate the
precise number of states in A×A though this requires a bit more work).

• Define A′ by adding transitions from s1 and s2 to s0 in the coalgebra A. Then A′ ×A′
is infinite.

44 CHAPTER 2. COALGEBRA

2.6 Exercises

Exercise 2.6.1. Some strange operations give rise to functors and some don’t:

1. Define AM : Set → Set as AM(X) = {(x, y, z) ∈ X3 : |{x, y, z}| ≤ 2}. Show that AM
can be extended to a functor.

2. Define B : Set→ Set as B(X) = {(x, y, z) ∈ X3 : |{x, y, z}| ≥ 2}. Show that B can not
be extended to a functor. [Hint: Do the next exercise first.]

Exercise 2.6.2. Show that, roughly speaking, operations have to be monotone in order to
allow for an extension to functors.

1. A functor that maps some non-empty set to the empty set maps any non-empty set to
the empty set.

2. Denote the cardinality of a set X by |X|. Suppose |X| 6= 0. Then |X| ≤ |Y | ⇒ |ΣX| ≤
|ΣY |.

Hint: Use that functors map injective functions with non-empty domain to injective functions.

Exercise 2.6.3 (Largest fixed points as final coalgebras). Let X be the category of sets with
inclusions as morphisms. Show that functors are monotone operators and final coalgebras are
largest fixed points.

Exercise 2.6.4 (Lambek’s lemma). From the previous exercise, we expect the structure of
a final coalgebra to be an isomorphism. Trying to generalise the previous proof leads us to
consider

Z
ζ - ΣZ

f - Z

ΣZ

ζ

? Σζ- ΣΣZ

Σζ

? Σf - ΣZ

ζ

?

Assuming that (Z, ζ) is final, show that ζ is iso.

Exercise 2.6.5 (Coalg(Σ) without final coalgebra). Show that Coalg(P) has no final coalge-
bra. [Hint: Use the preceding exercise and the fact that there is no set X with |X| = |PX|.]

Exercise 2.6.6 (Coalg(Σ) with final coalgebra but not all cofree ones). Let Pne be the
nonempty-powerset functor given by PneX = {P : P ⊂ X & |P | > 0}. Define Pne on
functions and show

2.7. NOTES 45

1. Coalg(Pne) has a final coalgebra.

2. For |C| > 1, Coalg(Pne) does not have a coalgebra cofree over C.

[Hint: For (2) reason as in the previous exercise.]

Exercise 2.6.7 (Setop). A boolean algebra A is complete iff it has infinite joins, that is, for
all subsets B ⊂ A there exists a least upper bound

∨
B in A. An element a ∈ A is called an

atom iff for all b ∈ A, 0 < b ≤ a ⇒ a = b. A boolean algebra is atomic iff every element is a
(possibly infinite) join of atoms. Morphisms are boolean algebra morphisms which preserve
infinite joins (hence meets). Denote the category of complete atomic boolean algebras by
CABA. The following shows that Setop is equivalent to CABA.7

1. Show that ϕ : Setop → CABA, (Y
fop−→ X) 7→ (PY f−1

−→ PX) defines a faithful functor.
[Here PY,PX denotes the powerset endowed with the structure of a complete atomic
boolean algebra.]

2. Writing at(A) for the set of atoms of A ∈ CABA, show that f : A → P(at(A)),
a 7→ {b ∈ at(A) : b ≤ a} is a CABA-isomorphism.

3. To see that ϕ is full consider a CABA-morphism f : PX → PY and let g : Y → X be
such that g(y) is the x ∈ X with y ∈ f({x}). Show that g is well-defined and ϕ(g) = f .

2.7 Notes

The founding paper for the area of universal coalgebra is Rutten [60]. Rutten’s approach is
based on sets as a base category whereas our goal was to treat (co)algebras over Set and Setop

simultaneously. More on this approach can be found in [32]. For an overview of results which
are specific to coalgebras over Set see Gumm [18]. The duality of behaviours and reachable
parts has been studied by Arbib and Manes [4] and recently in the context of algebraic
specifications in [11]. The construction of limits in Section 2.5 is from [32], different proofs
were given by Worrell [70], Power and Watanabe [45], and Gumm and Schröder [21].

A detailed textbook presentation of factorisation systems and their applications to algebra
can be found in Adámek, Herrlich, Strecker [3].

7Using the following characterisation of equivalence: Categories A and B are equivalent iff there is a full
and faithful functor ϕ : A → B such that every B ∈ B is isomorphic to some ϕ(A).

46 CHAPTER 2. COALGEBRA

Chapter 3

Coalgebra II

This chapter treats various topics of universal coalgebra which are not needed in the following
but are important enough to be contained in an introductory course on coalgebra.

First, we explain limits in categories of coalgebras. The construction of limits illustrates
the main topics of the previous chapter: duality, cofree coalgebras, and union of subcoalgebras.

Second, it is shown that with a mild assumption on the base category the behaviour of a
coalgebra always exists.

Third, we take a closer look at notions of behavioural equivalence and bisimulation.

Third, we show that coalgebras over sets always have final (and cofree) coalgebras.

3.1 Colimits

We have seen in Chapter 2.2.1 that coproducts of coalgebras are calculated as coproducts in
the base category. This generalises to arbirary colimits.

Let U : Coalg(Σ) → X be the forgetful functor for Σ-coalgebras and D : I → Coalg(Σ)
a diagram. Suppose that the colimit (colim UD, ci : UDi → colim UD) of UD exists in X .
Then colim D = (colim UD, ξ) is determined by colim UD. The structure ξ is given as in the
diagram

colim UD
ξ
- Σ(colim UD)

UDi

ci

6

ξi - ΣUDi

Σci

6

Note that this definition of ξ makes the ci into coalgebra morphisms.

This property of the forgetful functor U is often referred to by saying that U creates colimits.

3.2 Behaviours

In our introduction of systems the notion of behaviour was central. The behaviour of a system
was given—up to isomorphism—by the quotient identifying all behavioural equivalent states.

47

48 CHAPTER 3. COALGEBRA II

Definition 3.2.1 (Behaviour I). Let Σ : Set → Set and suppose that Coalg(Σ) has a final
coalgebra (Z, ζ). The behaviour of a coalgebra (X, ξ) is the image of the unique morphism
! : (X, ξ)→ (Z, ζ).

Remark. In the not set-based case, this definition depends on a factorisation system in
Coalg(Σ) which provides us with a notion of image (see Definition 2.2.5).

The definition above depends on the existence of a final coalgebra. But the existence of
behaviours does not. We may therefore prefer the following definition:

Definition 3.2.2 (Behaviour II). Let Σ : Set→ Set and (X, ξ) a Σ-coalgebra. Consider the
diagram consisting of all quotients (X, ξ)

ei−→ (Xi, ξi) of (X, ξ). The behaviour of (X, ξ) is
then the colimit of this diagram.

Remark. The definition says that the behaviour of a coalgebra identifies all states that are
identified by some morphism.

Remark. In the not set-based case, this definition depends on a factorisation system for
Coalg(Σ) and requires that any coalgebra has, up to isomorphism, only a set of quotients.

Exercise 3.2.3. Show set in the set-based case both definitions are equivalent if Coalg(Σ)
has a final coalgebra.

3.3 Behavioural Equivalence and Bisimulation

We first restate the definition of behavioural equivalence from Chapter 1.2.6.1

Definition 3.3.1. Let Σ : Set→ Set and (X, ξ), (X ′, ξ′) be two Σ-coalgebras.

1. Two elements x ∈ X and x′ ∈ X ′ are behavioural equivalent iff there are morphisms

(X, ξ) (X ′, ξ′)

•�
f
′f -

such that f(x) = f ′(x′).

2. Two coalgebras (X, ξ), (X ′, ξ′) are behavioural equivalent iff there are surjective mor-
phisms

(X, ξ) (X ′, ξ′)

•�
� f

′f --

Remark. In the not set-based case, we need a notion of quotient, ie a factorisation system, to
obtain from (2) a definition of behavioural equivalence for coalgebras. We also need pushouts
in the base category to ensure that the definition yields indeed an equivalence.

1We concentrate on the case X = Set. The general case is discussed in [32].

3.3. BEHAVIOURAL EQUIVALENCE AND BISIMULATION 49

The definition above is based on the idea that processes that can be identified by mor-
phisms are behavioural equivalent. In particular, behaviours are preserved under morphisms.
This observation can be turned into another principle to show that two processes are be-
havioural equivalent.

Definition 3.3.2 (Coalgebraic bisimulation). Let Σ : Set→ Set and (X1, ξ1), (X2, ξ2) be two
Σ-coalgebras. A coalgebraic bisimulation, or Aczel-Mendler-bisimulation, between (X1, ξ1)
and (X2, ξ2) is a relation R ⊂ X1 ×X2 such that there is a function % : R→ ΣR such that

X1
� π1

R
π2 - X2

ΣX1

ξ1

?
�Σπ1

ΣR

%

? Σπ2- ΣX2

ξ2

?

where πi : R → Xi are the projection functions mapping a pair in R to its i-th component.
Two elements x1 ∈ X1, x2 ∈ X2 are (Aczel-Mendler) bisimilar iff there is a bisimulation R
with x1 R x2.

Since we know that morphisms preserve behaviours, it is obvious that bisimilar elements
of coalgebras are behavioural equivalent. The question is whether all behavioural equivalent
elements can also be related by a bisimulation. This is indeed the case if the signature weakly
preserves pullbacks (ie Σ maps pullbacks to weak pullbacks, see Appendix A).

Proposition 3.3.3. Let Σ : Set → Set weakly preserve pullbacks and (X, ξ), (X ′, ξ′) two
Σ-coalgebras. If x ∈ X and x′ ∈ X ′ are behavioural equivalent then they are bisimilar.

Proof. There are Σ-morphisms f : (X, ξ)→ (Y, η) and f ′ : (X ′, ξ′)→ (Y, η) with f(x) = f(x′).
Define R ⊂ X ×X ′ as the pullback

R
π2
- X ′

X

π1

?

.................

f
- Y

f ′

?

Note that x R x′. To see that R is a bisimulation we have to find a structure map % : R→ ΣR.

50 CHAPTER 3. COALGEBRA II

Consider

ΣR
Σπ2 - ΣX ′

R
π2-

�..................

%

X ′

ξ
′ -

X

π1
?

f
- Y

f ′

?

ΣX

Σπ1

?

Σf
-

�

ξ

ΣY

Σf ′

?

η

-

Since Σ weakly preserves pullbacks, the outer diagram is a weak pullback. Hence % exists and
R is a bisimulation.

An example of a functor not weakly preserving pullbacks is presented in the following
exercise.

Exercise 3.3.4. The functor AM : Set→ Set is defined on objects as AM(X) = {(x, y, z) ∈
X3 : |{x, y, z}| ≤ 2} and on morphisms in the obvious way. Consider the coalgebra ξ : X →
AMX where X = {x0, x1} and

ξ(x0) = (x0, x0, x1)

ξ(x1) = (x0, x1, x1)

Recall that coalgebras for the functor ΣX = X3 can be considered as automata taking inputs
from a three element set 3 (and having no output). Writing 3 = {0, 1, 2}, ξ(x0) = (x0, x0, x1)
can be interpreted as follows: In state x0, one goes to state x0 if one receives input 0 or 1
and one goes to state x1 if one receives input 2. One can now view the cardinality restriction
in the definition of AM as imposing a constraint on the implementation of these automata:
in every state at least two inputs have to give rise to the same successor state.

Show that

1. x0 and x1 are behavioural equivalent.

2. x0 and x1 are not bisimilar.

3. AM does not weakly preserve pullbacks.

3.4 Existence of Final and Cofree Coalgebras

3.4.1 Final Coalgebras via Union of All Behaviours

3.4.2 Final Coalgebras via Final Sequences

3.5 Notes

Chapter 4

Modal Logic

The purpose of this chapter is to introduce modal logic as far as needed in this course. For
more information see e.g. Blackburn, de Rijke, Venema [12] or Goldblatt [15].

4.1 Kripke Semantics

4.1.1 Introduction

Modal logic originated with the study of logics comprising modalities as eg ‘necessarily’. In
the beginning of the 20th century a piece of syntax was invented, nowadays mostly written
2, in order to write formulas

2ϕ

having the intended meaning that ϕ holds necessarily. A question at that time was to de-
scribe axiomatically the valid formulas involving necessity. Different proposals were discussed
generally including the following two axiom schemes and two rules.

(taut) all propositional tautologies

(dist) 2(ϕ→ ψ)→ 2ϕ→ 2ψ

(mp) from ϕ,ϕ→ ψ derive ψ

(nec) from ϕ derive 2ϕ

The interpretation is: propositional tautologies are valid; if necessarily ϕ→ ψ and necessarily
ϕ then necessarily ψ; modus ponens is clear; if ϕ is valid, then necessarily ϕ is valid. The
modal logic consisting of these axioms and rules is today usually denoted by K.

In general, one also proposed additional axiom schemes as eg

(refl) 2ϕ→ ϕ

(trans) 2ϕ→ 22ϕ

The interpretation is: if ϕ holds necessarily, then it holds indeed; if ϕ holds necessarily then
it is necessary that it holds necessarily.

For a long time it was difficult to judge the value of such axiomatisation because there
was no appropriate semantics of modal logic. This changed in the 1950s with the advent
of possible worlds or Kripke semantics. The idea is to use graphs (X,R), R ⊂ X × X, as
models for modal logic and to think of X as a set of possible worlds and of R as an alternative

51

52 CHAPTER 4. MODAL LOGIC

relation. We then say that a formula holds necessarily in the world x iff it holds in all possible
alternatives:

(X,R, x) |= 2ϕ iff (X,R, y) |= ϕ for all y with xRy

A formula holds in (X,R) iff it holds in all worlds x ∈ X and a formula is valid iff it holds in
all (X,R).

Exercise 4.1.1. If you are not familiar with Kripke semantics, then show that (dist) is valid.
Also show that (nec) is correct: if ϕ is valid, then also 2ϕ. Show that ϕ→ 2ϕ is not valid.

4.1.2 Frames and Models

We presented modal logic avoiding any discussion of propositional logic. But there is an issue:
namely whether we should interpret the atomic propositions p ∈ Prop of propositional logic
as variables or as constants. This distinction gives rise to the notions of Kripke frame and
Kripke model.

But first let us be precise about the language of modal logic.

Definition 4.1.2 (Modal language). Given a set of atomic propositions Prop, the set of all
modal formulas ML, sometimes written ML(Prop), is defined inductively by

p ∈ Prop ⇒ p ∈ML

⊥ ∈ML

ϕ,ψ ∈ML ⇒ ϕ→ ψ ∈ML

ϕ ∈ML ⇒ 2ϕ ∈ML

⊥ is falsum. The other boolean operators >,¬,∧,∨ can be defined from ⊥,→. The modal
operator 3 is defined as ¬2¬.

If we understand atomic propositions as constants we need to extend graphs by interpre-
tations of atomic propositions:

Definition 4.1.3. A Kripke model (X,R, V) consists of a set X , a relation R ⊂ X ×X
and a valuation V : X → PProp.

Elements of X are called states, (possible) worlds, or points. R is called the accessibility rela-
tion or alternative relation. Elements of Prop are called atomic propositions or propositional
variables.

The idea is that V assigns to x ∈ X the set of atomic propositions holding in x; the semantics
of propositional connectives is as usual and the semantics of 2 is as we have seen it. To
summarise:

Definition 4.1.4 (Semantics of modal logic). For a Kripke model (X,R, V) and x ∈ X
define:

(X,R, V, x) |= p iff p ∈ V (x)

(X,R, V, x) /|= ⊥

(X,R, V, x) |= ϕ→ ψ iff (X,R, V, x) |= ϕ ⇒ (X,R, V, x) |= ψ

(X,R, V, x) |= 2ϕ iff xRy ⇒ (X,R, V, y) |= ϕ for all y ∈ X.

4.1. KRIPKE SEMANTICS 53

ϕ holds in a model (X,R, V), written (X,R, V) |= ϕ, iff (X,R, V, x) |= ϕ for all x ∈ X. And
ϕ is valid, written |= ϕ, iff ϕ holds in all models.

Notation: We write x |= ϕ instead of (X,R, V, x) |= ϕ when (X,R, V) is clear from the
context.

We can also take another perspective on atomic propositions. Studying eg the logic of
necessity, one is interested in the formulas valid under all possible interpretations of atomic
propositions. We then think of atomic propositions as propositional variables:

Definition 4.1.5. A Kripke frame (X,R) consists of a set X, and a relation R ⊂ X ×X.
Models (X,R, V), V : X → PProp, are said to be based on (X,R) and (X,R) is called the
underlying frame of the model.

A frame (X,R) satisfies a formula ϕ, or ϕ holds in (X,R), iff all models based on the frame
satisfy ϕ:

(X,R) |= ϕ iff (X,R, V) |= ϕ for all V : X → PProp

Note that ϕ holds in all models iff it holds in all frames.

One difference between models and frames is that the theory of a frame is always closed
under substitution, see Exercise 4.4.1. For frames, it is therefore enough to consider axioms
as eg 2p → p for some p ∈ Prop; for models, however, we would employ an axiom scheme
2ϕ→ ϕ corresponding to the set of axioms {2ϕ→ ϕ : ϕ ∈ML}. A more essential difference
between models and frames is the topic of the next

Exercise 4.1.6. Let p ∈ Prop.

1. Show that 2p→ p holds in all reflexive frames (X,R) (ie ∀x ∈ X . xRx).

2. Give an example of a non-reflexive model satisfying 2ϕ → ϕ for all ϕ ∈ ML. Is there
a non-reflexive frame satisfying 2p→ p?

From the point of view of logic, frames seem to be the interesting structures: When we
ask what formulas are valid under all interpretations of propositional variables, it is natural
to consider frames as the semantic structures for modal logic.

On the other hand, from the computer science point of view, models seem to be the natural
structures. Consider a program or algorithm as given by a set of states X and a relation R,
R giving for each state its successors. But program states are not just ‘naked’ elements, they
carry additional information, typically the contents of the memory. This information can be
thought of as being encoded by the valuation V : X → PProp. That is, thinking of modal
logic as a specification language for transition systems (algorithms, programs), models are
the natural semantic structures of modal logic.

But even then, the underlying frames (X,R) are of some interest. Often, we are not
interested in arbitrary models (X,R, V) but want to restrict our attention to programs with
special properties, eg deterministic ones. Being deterministic then, is a property of R, and
hence a property of the class of underlying frames. For another typical example, think of
Kripke models (X,R, V) as runs of programs. In this case we may want to require the
underlying frames to have an initial state, to be reflexive, transitive, and perhaps linear.

The next section further develops the exercise above and discusses how modal logic can
be used to describe certain frame classes.

54 CHAPTER 4. MODAL LOGIC

4.1.3 Definability

We say that a class of frames B is defined by a class of formulas Φ iff B = {(X,R) : (X,R) |=
Φ}. There are then two questions relating to definability:

• Given a class of formulas, can we characterise the defined class of frames?

• Given a class of frames, are there formulas defining it?

To illustrate the first question, suppose that someone proposes formulas (refl) and (trans) as
axioms for necessity. Understanding then the defined class of frames would make it easier to
judge the proposed axiomatisation (for example, as will be shown below, whether we accept
(trans) depends on whether we think of the alternative relation as being transitive). To
illustrate the second question, recall from the discussion at the end of the previous section
that we might be interested in defining eg the class of deterministic frames or the class of
reflexive, transitive, linear frames.

There exist only partial answers to these questions but many important cases are well-
known. Table 4.1 gives a typical list of examples.

To check that a frame satisfying the first-order property also satisfies the modal formula
is usually straight forward. If you are not familiar with this, you should do some of the
correspondences in Table 4.1 as exercises. The converse direction is usually more difficult to
establish. An easy but typical example is the case of (trans):

We show that only transitive frames satisfy 2p→ 22p. Suppose (X,R) is not transitive,
that is, there are x, y, z ∈ X such that xRy ∧ yRz ∧ ¬xRz. We have to find a valuation V
such that (X,R, V, x) /|= 2p → 22p. Choose as extension of p the smallest set such that
(X,R, V, x) |= 2p (ie let p ∈ V (w) ⇔ xRw). Now, ¬xRz guarantees that p 6∈ V (z) and it
follows from xRy ∧ yRz that (X,R, V, x) /|= 22p.

4.1.4 Multimodal Logics

We have seen Kripke semantics for modal logics with one modality. But the basic ideas of
modal logic and possible world semantics can be varied in many ways. We will discuss here
only modal logics with more than one modality.

A multimodal logic has modalities 2a for all a ∈ A for some set A. That is, the last clause
of Definition 4.1.2 is replaced by

ϕ ∈ML, a ∈ A ⇒ 2aϕ ∈ML

One should now write ML(Prop, A) but if no confusion can arise we continue to use ML.

A frame (X, (Ra)a∈A) for a multimodal logic has a relation Ra for each modality 2a. A
model (X, (Ra)a∈A, V) has additionally a valuation of atomic propositions.

Example 4.1.7 (Hennessy-Milner logic). Consider a multimodal logic without atomic propo-
sitions and with modalities 2a, a ∈ A, where we think of A as a set of actions and of 2aϕ as
‘ϕ holds after a’. A Kripke model is then a transition system (X, (Ra)a∈A) (remember that
there are no atomic propositions and hence no valuation). It is customary to write x

a−→ y
for x Ra y and [a] for 2a.

4.2. BISIMULATION 55

Name Axiom

1 (refl) 2p→ p

2 (trans) 2p→ 22p

3 (ser) 3>
4 (det) 3p→ 2p

5 (fun) 3p↔ 2p

6 (dir) 32p→ 23p

Name Conditions on R

1 reflexive ∀x(xRx)

2 transitive ∀x∀y∀z(xRy ∧ yRz → xRz)

3 serial ∀x∃y(xRy)

4 deterministic ∀x∀y∀z(xRy ∧ xRz → y = z)

5 functional ∀x∃!y(xRy)

6 directed ∀x∀y∀z(xRy ∧ xRz → ∃x′(yRx′ ∧ zRx′))

Table 4.1: Modal Formulas and First-Order Correspondences

Example 4.1.8 (Multi-agent systems). Consider a multimodal logic with modalities 2a,
a ∈ A, where we think of A as a set of agents and of 2aϕ as ‘agent a knows ϕ’. Atomic
propositions describe the facts agents can know. A Kripke model (X, (Ra)a∈A, V) can be
understood as follows. X is a set of possible worlds and V describes the facts holding in each
world. xRay means that agent a considers y as an alternative world for x. x |= 2aϕ means
that ϕ holds in all worlds which are considered as alternative worlds by agent a, ie a knows
ϕ.

Example 4.1.9 (Temporal logic). Consider a multimodal logic with two modalities d,2
where we think of dϕ as ‘in the next state holds ϕ’ and of 2ϕ as ‘now and always in the
future holds ϕ’. A particularly interesting Kripke frame for this logic is (N,S ,≤) where
m S n iff n = m+ 1. Models based on this frame can be considered as runs of programs and
the modal logic defined by this frame, linear temporal logic, plays an important role in the
verification of programs, see eg [31, 41, 14, 64].

4.2 Bisimulation

Having seen Kripke frames and models, it is natural to ask what would be an appropriate
notion of morphism for these structures. But instead of defining morphisms right away, we
look first at relations between models. In particular, given two (multimodal) Kripke models
(X, (Ra)a∈A, V), (X ′, (R′a)a∈A, V

′), we are interested in describing relations B ⊂ X×X ′ such
that

x B x′ ⇒ (x |= ϕ ⇔ x′ |= ϕ).

A careful analysis of the definition of x |= ϕ leads to the following notion of bisimulation.

56 CHAPTER 4. MODAL LOGIC

Definition 4.2.1 (Bisimulation). Given two Kripke models (X, (Ra)a∈A, V),
(X ′, (R′a)a∈A, V

′) we call B ⊂ X × X ′ a bisimulation between the models iff x B x′

implies that

V (x) = V (x′)

x
a−→ y ⇒ ∃y′ . x′ a−→ y′ & y B y′

x′
a

−→′ y′ ⇒ ∃y . x
a−→ y & y B y′

(writing
a−→ for Ra and R′a). x, x′ are called bisimilar iff there is a bisimulation relating them.

Bisimulations for frames can be obtained as a special case by ignoring the clause concerning
the valuations V, V ′.

Examples of (non-)bisimilarity can be found in the exercises. For us, the following is
essential and an exercise that should not be missed.

Exercise 4.2.2. Show by induction on the structure of formulas that given two models
(X, (Ra)a∈A, V), (X ′, (R′a)a∈A, V

′) then for all x ∈ X, x′ ∈ X ′ it holds: x, x′ bisimilar implies
that x |= ϕ ⇔ x′ |= ϕ for all modal formulas ϕ.

We now define morphisms as functional bisimulations.

Definition 4.2.3. Given two Kripke models/frames (X, . . .), (X ′, . . .) a morphism f :
(X, . . .) → (X ′, . . .) is a function f : X → X ′ such that its graph {(x, f(x)) : x ∈ X} is
a bisimulation.

These morphisms are usually called p-morphisms or bounded morphisms. The following
observation—which should by now be no surprise—justifies to call them simply morphisms.

Proposition 4.2.4. The morphisms of Kripke models/frames are precisely the coalgebra mor-
phisms.

Proof. (Monomodal) Kripke frames are P-coalgebras and their morphisms were shown to be
functional bisimulations in Proposition 2.1.3 (check this). Kripke models are (P × PProp)-
coalgebras; multimodal Kripke frames are P(A×−)-coalgebras and multimodal Kripke models
(P(A×−)× PProp)-coalgebras. These cases are only slight variations.

Another way to phrase the relationship between coalgebras and Kripke models/frames is the
following:

Proposition 4.2.5. Let (X, . . .), (X ′, . . .) be two Kripke models/frames. Then x ∈ X, x′ ∈
X ′ are bisimilar (in the sense of modal logic) iff they are behaviourally equivalent (in the
coalgebraic sense).

The relationship between modal formulas and morphisms is summarised by the following
two classical results. We need some standard terminology: a formula ϕ is preserved under
quotients if A → A′ surjective and A |= ϕ implies A′ |= ϕ; ϕ is preserved under submod-
els/subframes if A′ → A injective and A |= ϕ implies A′ |= ϕ; ϕ is preserved under disjoint
unions (or coproducts) if Ai |= ϕ for all i ∈ I implies

∐
I Ai |= ϕ; ϕ is preserved under

domains of quotients if A′ → A surjective and A |= ϕ implies A′ |= ϕ.

4.3. THE LOGIC OF BISIMULATION 57

Proposition 4.2.6. Wrt Kripke models, modal formulas are preserved under quotients, sub-
models, disjoint unions, and domains of quotients.

Proposition 4.2.7. Wrt Kripke frames, modal formulas are preserved under quotients, sub-
frames, and disjoint unions.

The proof of this propositions is an easy corollary to Exercise 4.2.2.

4.3 The Logic of Bisimulation

The aim of this section is to substantiate the claim that modal logic is the logic of bisimulation.
We have seen in Exercise 4.2.2 that for two models (X,R, V), (X ′, R′, V ′), and x ∈ X, x′ ∈ X ′

x, x′ bisimilar ⇒ ∀ϕ ∈ML : x |= ϕ ⇔ x′ |= ϕ,

that is, bisimilarity implies modal equivalence. Unfortunately, the converse does not hold.
Figure 4.1 shows an example where x has for each n ∈ N a branch of length n, and x′ has
additionally an infinite branch. That x and x′ are not bisimilar is not difficult to see:

....x

....

x’

Figure 4.1: Modally equivalent but not bisimilar models

Exercise 4.3.1. Consider the models in Figure 4.1 (assume that all states satisfy the same
atomic propositions). Show that x, x′ are not bisimilar.

To show that x and x′ are modally equivalent is not difficult either but requires a bit more
work, see Exercise 4.4.5.

The example suggests (at least after having done Exercise 4.4.5) that the failure of modal
logic to characterise states up to bisimilarity is related to the facts that

• a single modal formula can not express enough about an infinite branch, and that

• a transition system may have infinite branching.

And indeed, adjusting either of the two points above results in a perfect match of bisimilarity
and modal expressiveness. This is the contents of the following two theorems.

The first idea is to increase expressiveness of modal logic using infinitary modal logic
ML∞. ML∞ is defined as ML with the additional clause

Φ ⊂ML∞ ⇒
∧

Φ ∈ML∞

and stipulating x |=
∧

Φ ⇔ ∀ϕ ∈ Φ : x |= ϕ.

58 CHAPTER 4. MODAL LOGIC

Theorem 4.3.2. For each model (X,R, V) and each x ∈ X there is a formula ϕx ∈ ML∞
such that for all models (X ′, R′, V ′) and all x′ ∈ X ′

x′ |= ϕx iff x, x′ bisimilar.

The other idea is to restrict attention to models with finite branching.

Theorem 4.3.3 (Hennessy and Milner). Let K be the class of image-finite Kripke models,
ie for all (X,R, V) and all x ∈ X the set {y : x R y} is finite. Then for all (X,R, V),
(X ′, R′, V ′) in K and all x ∈ X, x′ ∈ X ′

∀ϕ ∈ML : x |= ϕ ⇔ x′ |= ϕ ⇒ x, x′ bisimilar.

From the point of view of classical first-order logic, however, the most satisfactory expla-
nation of the relationship of modal logic to bisimulation is the following characterisation of
modal logic as the bisimulation invariant fragment of first-order logic: A first-order formula
is invariant under bisimulations iff it is equivalent to a modal formula.

To make this precise we note that a Kripke model (X,R, V) can also be understood as
a first-order model with one binary relation R and one unary predicate P for each atomic
proposition p ∈ Prop. Let us call FL the corresponding first-order language (containing one
relation symbol and for each atomic proposition a unary predicate symbol). The definition
of (X,R, V, x) |= ϕ in Section 4.1.2 can now be read as a translation (−)∗ : ML → FL of
modal formulas in first-order formulas with one free variable x:

p∗ = P (x)

⊥∗ = ⊥

(ϕ→ ψ)∗ = ϕ∗ → ψ∗

(2ϕ)∗ = ∀y : xRy → ϕ∗[y/x]

where y is a variable not occurring free in ϕ∗ (and [y/x] denotes substitution of y for x).

Theorem 4.3.4 (van Benthem). A first-order formula ψ ∈ FL is invariant under bisimula-
tion iff it is logically equivalent to a translation ϕ∗ of a modal formula ϕ ∈ML.

4.4 Exercises

Exercise 4.4.1. Show that the theory of a frame is closed under substitution. That is, for
ϕ,ψ ∈ML and p ∈ Prop it holds that (X,R) |= ϕ ⇒ (X,R) |= ϕ[ψ/p] (where [ψ/p] denotes
substitution of ψ for p).

Exercise 4.4.2 (Examples of bisimilarities). Assume a monomodal language. Show that in
the models given below the states x and x′ are bisimilar.

1. The relational structure of the models is depicted below. For the valuations assume
that V (y) = V (z) = V ′(y′) and V (x) = V ′(x′).

y’x’x

y

z

4.4. EXERCISES 59

2. For the following models assume that all states have the same valuation.

x x’

Exercise 4.4.3 (A non-example of bisimilarity). Assume a multimodal language with three
modalities A = {a, b, c} and no atomic propositions. Consider the two models below.

x x’

a

b

c

a

c

b

a

1. Show that x, x′ are not bisimilar.

2. Give modal formulas that distinguish x and x′.

Note that both models show the same behaviour {ab, ac} if only traces are considered.

Exercise 4.4.4 (Bisimilarity of frames). For frames bisimilarity does not imply modal equiv-
alence. First note that x, x′ in the the following two frames are bisimilar.

x x’

Now, show

1. x |= ϕ ⇒ x′ |= ϕ

2. x′ |= ϕ; x |= ϕ

Exercise 4.4.5 (Modal equivalence does not imply bisimilarity). Denote by (X,R, V) and
(X ′, R′, V ′) the two models of Figure 4.1. The aim is to show that x and x′ are modally
equivalent. We need two definitions.

The depth of a modal formula counts the number of nested boxes, ie depth(⊥) = depth(p) = 0,
depth(ϕ→ ψ) = max(depth(ϕ), depth(ψ)), depth(2ϕ) = depth(ϕ) + 1.

Denote by Cut(x, n) the model which is obtained from (X,R, V) by deleting all states which
are not reachable from x in n or fewer than n steps. For example Cut(x, 0) consists just of
x. Similarly define Cut ′(x′, n).

1. Show that depth(ϕ) ≤ n implies that (Cut(x, n), x) |= ϕ ⇔ (X,R, V, x) |= ϕ and that
(Cut ′(x′, n), x′) |= ϕ ⇔ (X ′, R′, V ′, x′) |= ϕ.

2. Conclude that for all modal formulas (X,R, V, x) |= ϕ ⇔ (X ′, R′, V ′, x′) |= ϕ.

60 CHAPTER 4. MODAL LOGIC

4.5 Notes

For background on modal logic the reader is referred to Chapter 2 and 3 of Blackburn, de
Rijke, Venema [12]. We just note that bisimulation goes back, in its functional form, to
Segerberg [63], and in its relational form to van Benthem [66]; Theorem 4.3.2 can be found in
Barwise and Moss [10], Theorem 4.3.3 is due to Hennessy and Milner [22], and Theorem 4.3.4
to van Benthem [66, 67].

Chapter 5

Modal Logics for Coalgebras

The investigation of modal logics for coalgebras is still a young area of research. Since it is
not in a definite shape yet, we will content ourselves to describe a few approaches.

We put emphasis on the theory of coalgebras as a general theory of systems. Not in the
sense, of course, that it solves all problems concerning systems. But general in the sense that
it offers tools that apply uniformly to a large class of systems. An obvious question from this
perspective is, whether we can deal with logics for coalgebras in a uniform way. This question
is of interest from a computer science point of view because coalgebras are systems and logics
are specification languages.

This chapter presents some approaches which represent the tension between achieving
uniformness and remaining close to the specific signature. The ideal description of a logic for
coalgebras would work uniformly for all signatures and, at the same time, would reflect for
each signature our intuition of coalgebras as transition systems.

The following three sections present three approaches that may be compared wrt this
dilemma. The first solves the problem of being uniform but its syntax is neither familiar nor
practical to work with. The second only works for specific signatures but its syntax is familiar
modal logic. The third tries to get as much as possible from both approaches.

The order of the presentation reflects the historical development.

5.1 Coalgebraic Logic

Coalgebraic logic is an ingenious invention by Larry Moss. To appreciate it, before continuing
to read on, try to think of a syntax and semantics of a logic for coalgebras working in a uniform
way for all signatures Σ : Set→ Set. Moreover, formulas of the logic should be invariant under
behavioural equivalence and the logic should be reasonably expressive. Reasonably expressive
can be made precise by requiring that admitting infinite conjunctions, the logic should be able
to characterise processes (elements of coalgebras) up to behavioural equivalence (compare with
Theorem 4.3.2).

The aim is to find a language LΣ and for each Σ-coalgebra (X, ξ) a relation |=Σ ⊂ X×LΣ

satisfying the above requirements. The starting point is that signatures are functors on Set
and may hence also be applied to sets of formulas LΣ and relations |=Σ.

We allow LΣ and |=Σ to be proper classes. The category of classes is denoted by SET.
Functors Σ on Set are extended to functors on SET via ΣK =

⋃
{ΣX : X ⊂ K,X a set} for

classes K. Moreover, Σ is assumed to weakly preserve pullbacks.

61

62 CHAPTER 5. MODAL LOGICS FOR COALGEBRAS

Definition 5.1.1 (coalgebraic logic, syntax). LΣ is defined to be the least class satisfying:

Φ ⊂ LΣ, Φ a set =⇒
∧

Φ ∈ LΣ

ϕ ∈ Σ(LΣ) =⇒ ϕ ∈ LΣ

(That is, LΣ is the initial algebra wrt the functor P+Σ.) Due to the first clause
∧
∅, denoted

by true, is in LΣ and LΣ is a proper class. The last clause uses the fact that Σ is a functor
on SET and can also be applied to classes of formulas.

Example 5.1.2. Let ΣX = A × X and ai ∈ A. Then true, (a0, true), (a0, (a1, true)),∧
{(a0, . . . , an, true) : n ∈ N} are examples of formulas.

Exercise 5.1.3. Give examples of formulas for Σ = O × IdI (ie deterministic automata, see
Chapter 1.3) and Σ = P.

The semantics of coalgebraic logic goes as follows.

Definition 5.1.4 (coalgebraic logic, semantics). Given a coalgebra (X, ξ) define |=Σ ⊂ X×LΣ

as the least relation such that (let x ∈ X):

x |=Σ ϕ for all ϕ ∈ Φ, Φ ⊂ LΣ, Φ a set ⇒ x |=Σ
∧

Φ

there is w ∈ Σ(|=Σ) s.t. Σπ1(w) = ξ(x), Σπ2(w) = ϕ ⇒ x |=Σ ϕ

where π1, π2 denote the projections from the product X × LΣ to its components.

The following exercise explains how this definition works in the example of streams. In
particular, it shows that formulas are invariant under behavioural equivalence.

Exercise 5.1.5. Let X
ξ−→ A×X and x ∈ X. Show that

x |=A×Id (a0, . . . an, true) iff head(tail i(x)) = ai for all 0 ≤ i ≤ n

where head : X → A and tail : X → X denote the components of ξ.

The following theorem summarises the main properties of coalgebraic logic. For proofs we
refer to the original paper [42].

Theorem 5.1.6. Let Σ : Set→ Set be a functor weakly preserving pullbacks. Then

1. formulas of LΣ are invariant under behavioural equivalence and

2. for each coalgebra (X, ξ) and each x ∈ X there is a formula ϕx ∈ LΣ such that for all
coalgebras (X ′, ξ′) and all x′ ∈ X ′

x′ |=Σ ϕx iff x, x′ behaviourally equivalent.

This theorem shows that coalgebraic logic reflects precisely the notion of behavioural
equivalence. Moreover, Exercise 5.4.1 shows that, eg in the case of Σ = P, every formula of
modal logic is equivalent to a formula of coalgebraic logic (with negation). We can therefore—
neglecting syntactical ‘details’—consider coalgebraic logic as modal logic. But what happened,
then, to the modalities of modal logic? To explain this, let us take a closer look at coalgebraic
logic in the case Σ = P. Recall that formulas are either of the form

∧
Φ or—due to the second

5.2. LOGICS DESIGNED FOR SPECIFIC SIGNATURES 63

clause of Definition 5.1.1—of the form Φ for Φ ∈ PLP . We take a look at the formulas of the
second kind.1

Proposition 5.1.7. Let Φ ∈ PLP , X
ξ−→ PX, and x ∈ X. Then

x |=P Φ ⇔

 ∀y ∈ ξ(x) : ∃ϕ ∈ Φ : y |=P ϕ and

∀ϕ ∈ Φ : ∃y ∈ ξ(x) : y |=P ϕ

Using the modal operators 2,3, this can be rewritten as

x |= 2
∨

Φ ∧
∧

3Φ

where 3Φ = {3ϕ : ϕ ∈ Φ}. This shows that the modalities are still there, but in ‘some
strange way’. Whether it is possible to extract the familiar modalities from a functor Σ will
be addressed in Section 5.3.

5.2 Logics Designed for Specific Signatures

As we have seen, coalgebraic logic solves the problem of describing a logic which depends in
a uniform way on the given signature. But in some other respects it is far away from what
we are used to call modal logic. It is therefore natural to give up a bit of generality and see
what can be achieved in concrete examples. The basic idea is simply to find a translation
of coalgebras into transition systems and then to use standard modal logic as a logic for
coalgebras.

Let us consider as an example the signatures of classes, see Chapter 1.4.1. Signatures are
then functors

ΣX =
∏

1≤m≤n
(Em +Om ×X)Im . (5.1)

where for each method m the sets Im, Om, Em denote the sets of inputs, outputs, exceptions,
respectively.

It is now straight forward to translate coalgebras X → ΣX into Kripke models
(X, (Ra)a∈A, V). To each method and each input corresponds a relation, ie A = {(m, i) : 1 ≤
m ≤ n, i ∈ Im}. Atomic propositions are used to describe the outcomes of the methods, that is
we put Prop = {(m, i, o) : 1 ≤ m ≤ n, i ∈ Im, o ∈ Om}∪{(m, i, e) : 1 ≤ m ≤ n, i ∈ Im, e ∈ Em}
and interpret the proposition (m, i, o) as ‘method m applied to input i yields output o’ and
(m, i, e) as ‘method m applied to input i yields exception e’.2

To discuss this translation in a bit more detail, let us denote by K(Σ) the class of all Kripke

models (X, (Ra)a∈A, X
V−→ PProp) with A and Prop as described above. The translation of

coalgebras to models will be denoted by

ck : Coalg(Σ)→ K(Σ).

1We write Φ instead of ϕ because, due to Σ = P, the formula Φ is indeed a set of formulas. Unfortunately,
this may cause confusion because x |= Φ could be understood as “x |= ϕ for all ϕ ∈ Φ” or as x |= Φ according
to the second clause of Definition 5.1.4. It is the latter understanding of x |= Φ which is discussed in the
following.

2A more detailed description of the translation of coalgebras into Kripke models can be found in Exer-
cise 5.4.2, see properties (1)–(3).

64 CHAPTER 5. MODAL LOGICS FOR COALGEBRAS

Of course, we are not interested in all of K(Σ) but only in those models in K(Σ) which are
Σ-coalgebras. That is, we are interested in the image of ck. The idea is now

• to describe the image of ck, up to bisimulation, by modal formulas, and

• to add these formulas as axioms to a standard modal logic for K(Σ).

which will result in a modal logic for the image of ck and hence for Coalg(Σ). Moreover,
this logic will in general inherit good properties from the modal logic for K(Σ) such as
completeness and decidability (model checking). You can work this out as Exercise 5.4.2.

Of course, as described so far, this approach suffers from the fact that, although straight
forward and easy, it only works for the signatures describing classes as in (5.1). It can be
generalised, though, to all signatures which are defined inductively via

Σ ::= Id | A | Σ× Σ | Σ + Σ | ΣA | PΣ.

This line of research was pursued by Rößiger [54, 52, 51, 53].

5.3 Modalities from Functors

We have seen that coalgebraic logic solves the problem of a uniform approach to modal logics
for coalgebras but that it has no modalities. And we have seen that for specific functors
we can give a modal logic with modalities by translating them to Kripke models and then
using standard modalities from modal logic. This section presents an approach with allows
to extract the modalities from the functors Σ in a uniform way.

5.3.1 Modalities Induced by Natural Transformations Σ→ P

The beautiful insight, due to Pattinson [43], is that modalities (at least those studied so far
for coalgebras) correspond to natural transformations Σ → P (or to natural relations on Σ,
see [43]). We first take a look at a few examples of natural transformations.

Exercise 5.3.1.

1. Show that µ : (E +O ×−)→ P defined by

µX : E +O ×X → PX
e 7→ ∅

(o, x) 7→ {x}

is a natural transformation (where e ∈ E, o ∈ O, x ∈ X).

2. Show that, for each i ∈ I, µ[i] : O × (−)I → P defined by

µ[i]X : O ×XI → PX
(o, f) 7→ {f(i)}

is a natural transformation.

5.3. MODALITIES FROM FUNCTORS 65

3. Let ΣX =
∏

1≤m≤n(Em +Om ×X)Im . Show that for all 1 ≤ m ≤ n and im ∈ Im

µ[m, i] : Σ→ P

defined by

µ[m, i]X : ΣX → PX

〈f1, . . . fn〉 7→
{
{x} if fm(i) = (o, x) for some o ∈ Om
∅ otherwise

is a natural transformation (where 1 ≤ m ≤ n and i ∈ Im).

Remark 5.3.2. Note how the natural transformations µ of the exercise above extract from
ΣX the successors. In detail, ξ : X → ΣX being a coalgebra for the signatures (1) to (3),
respectively:

1. µX(ξ(x0)) is the empty set if x0 has no successor and otherwise the singleton containing
the unique successor of x0.

2. µ[i]X(ξ(x0)) gives the successor of x0 obtained on input i.

3. µ[m, i]X(ξ(x0)) gives the successor of x0 obtained by applying method m with input i
to state x0.

Also note that, in case (3), µ[m, i]X ◦ ξ gives precisely the relation R(m,i) which was discussed
in the previous section as the relation corresponding in a Kripke model to a Σ-coalgebra (X, ξ)
(see also Exercise 5.4.2).

That only singletons {x} appear on the right hand side is of course due to the systems
being deterministic.

Exercise 5.3.3. Show that µ[a] : P(A×−)→ P defined for all a ∈ A by

µ[a]X : P(A×X)→ PX
Q 7→ {x : (a, x) ∈ Q}

is a natural transformation.

We have seen that for a system ξ : X → ΣX and a natural transformation µ : Σ → P,
the µ-successors of x ∈ X are given by µX(ξ(x)). The semantics of modal operators, one for
each natural transformation µ, can now be defined as usual for all x ∈ X

x |= 2µϕ iff y |= ϕ for all y ∈ µX(ξ(x)) (5.2)

or, equivalently, but of use below

[[2µϕ]] = ξ−1(µ−X([[ϕ]]) (5.3)

where [[ϕ]], called the extension of ϕ, is {x ∈ X : x |= ϕ} and µ− is defined via3

3Recall that 2X is the set of functions X → 2 for some fixed two-element set 2, ie 2X ' PX is the set of
subsets of X. Here, we prefer the notation 2X since 2(−) is the contravariant functor mapping f : X → Y to
the inverse image f−1 = 2f : 2Y → 2X .

66 CHAPTER 5. MODAL LOGICS FOR COALGEBRAS

µ−X : 2X → 2ΣX

P 7→ {s ∈ ΣX : µX(s) ⊂ P}.
(5.4)

[Comment on notation: It would be more precise to write (X, ξ, x) |= ϕ instead of x |= ϕ (cf
Definition 4.1.4) and [[ϕ]](X,ξ) instead of [[ϕ]] but we suppress (X, ξ) when convenient.]

What is the point of requiring the transformations µ to be natural? It is precisely this
requirement, what makes in the definition above 2µ into a modal operator. This is the
contents of the next proposition.

Proposition 5.3.4. Let Σ : Set → Set and µ : Σ → P a natural transformation. If ϕ is
invariant under behavioural equivalence then so is 2µϕ.

Proof. Consider a coalgebra (X, ξ) and let (Z, ζ) be its behaviour. First note that any subset
U ⊂ X of a coalgebra (X, ξ) is invariant under behavioural equivalence iff there is V ⊂ Z
such that U = !−1(V) where ! is the unique morphism into (Z, ζ). Now consider

2X �
ξ−1

2ΣX �
µ−X 2X

2Z

!−1

6

� ζ−1

2ΣZ

(Σ!)−1

6

�
µ−Z 2Z

!−1

6

The left-hand square commutes since ! is a morphism and 2(−) = (−)−1 is a functor. The
right-hand square commutes since µ− is natural (Exercise 5.4.3). Now, consider !([[ϕ]]) as an
element of the lower right corner 2Z . Since ϕ is invariant, ie !−1(!([[ϕ]])) = [[ϕ]], going up and
left gives us [[2µϕ]] (see (5.3)). And going left and up shows that [[2µϕ]] = !−1(V) for some
V ⊂ Z.

Having seen how to obtain modalities from natural transformations Σ → P we use the
same idea for atomic propositions. Given Σ, we call atomic propositions any set Prop together
with a natural transformation ν : Σ→ PProp.4 We then define as usual (compare with first
clause of Definition 4.1.4) for any x ∈ X:

x |= p iff p ∈ (νX ◦ ξ)(x) (5.5)

We have seen that modal operators and atomic propositions arise from natural transfor-
mations. Suppose we have chosen a set {µ[a] : a ∈ A} of natural transformations Σ→ P and
a natural transformation ν : Σ → PProp of atomic propositions. Is there a condition telling

4The notation PProp corresponds to the atomic propositions part of the signature for Kripke models
Σ = P × PProp and is appropriate since we consider Prop to be a given constant. In case we would like to
compare Kripke models with different sets of atomic propositions, we should rather use signatures Σ = P×2Prop

and natural transformations Σ→ 2Prop, see [38].

5.3. MODALITIES FROM FUNCTORS 67

us that we chose enough µ[a] and atomic propositions in order to get a reasonably5 expres-
sive modal logic? A sufficient condition is: To be able to embed Σ-coalgebras into Kripke
models, ie into

∏
a∈A P × PProp coalgebras.6 Stated more formally, the condition becomes:

The natural transformation induced by the µ[a], a ∈ A, and ν

Σ −→
∏
a∈A
P × PProp

is injective. The proof that this condition implies that the corresponding logic is reasonable
expressive is the main result of [43].

To summarise, we have seen how natural transformations can be used to extract modalities
from functors. Comparing with the previous section, the next challenge would be to ask
whether it is possible to find axioms in a uniform way which characterise the image of the
embedding of coalgebras into Kripke frames. Another open question is whether the approach
can be extended to cover all (weakly pullback preserving) functors Σ.

5.3.2 Modalities Induced by Predicate Liftings

Going back to the explanation of modal operators as induced by natural transformations
µ : Σ → P, we see that for the proof of Proposition 5.3.4 only the naturality of µ− : 2Id →
2Σ is required. It is therefore an obvious idea to consider modalities induced by natural
transformations 2Id → 2Σ. Natural transformations 2Id → 2Σ can be considered as predicate
liftings in the sense that 2X → 2ΣX is a lifting of Σ from an operation on carrier sets X to
an operation on predicates P ∈ 2X on X.

Having said that we want to consider modal operators induced by natural transforma-
tions 2Id → 2Σ, what about atomic propositions? There are slight variations possible (see
Exercise 5.4.4) and we propose the following. Atomic propositions p ∈ Prop are induced by
natural transformations

p̂ : Σ→ 2

where 2 = {true, false}. We then define

x |= p iff (p̂X ◦ ξ)(x) = true (5.6)

which is equivalent to

[[p]] = ξ−1(p̂X). (5.7)

[Note that p̂X ∈ 2ΣX and recall ξ−1 : 2ΣX → 2X .]

To summarise, given a set M of natural transformations 2Id → 2Σ and a set Prop of
natural transformations Σ→ 2, we obtain a language L(M,Prop) as laid out in

Definition 5.3.5 (Syntax and semantics of L(M,Prop)). Suppose Σ : Set → Set, M a set
of natural transformations 2Id → 2Σ, and Prop a set of natural transformations Σ→ 2. Then

5Again, ‘reasonably’ expressive can be made precise by requiring that if infinitary conjunctions are allowed
then formulas should characterise elements of coalgebras up to behavioural equivalence.

6Recall that
∏

a∈A P ' P
A ' P(A×−).

68 CHAPTER 5. MODAL LOGICS FOR COALGEBRAS

the language L(M,Prop) is the least set containing ⊥ and p for all p ∈ Prop and closed under
implication → and containing the formula 2µϕ for every µ ∈M and every ϕ ∈ L(M,Prop).

Given a coalgebra (X, ξ), the semantics for boolean operators is as usual and for atomic
propositions and modal operators as follows

[[p]] = ξ−1(pX),

[[2µϕ]] = ξ−1(µX([[ϕ]]))

where as above [[ϕ]] = {x ∈ X : x |= ϕ}.

Remark 5.3.6. This definition is from [38], with the difference that there atomic propositions
p : Σ→ 2 are subsumed under predicate liftings 2Id → 2Σ (see Exercise 5.4.4) which yields a
more concise definition but does not respect the traditional way of presenting modal logic.

We want to close this section with some background on predicate liftings and a comparison
of natural transformations 2Id → 2Σ with the original notion of predicate lifting. Predicate
liftings were introduced by Hermida and Jacobs [23] and formulated in a general setting
called categorical logic which we try to sketch briefly in the following.7 Consider a category
X of ‘types’ and a category E of ‘predicates’. Predicates and types are linked by a functor
p : E → X which provides for each X ∈ X the category p−1(X) of predicates on X. Endowing
p with appropriate structure, one can give an account of formulas (= predicates = objects
in E) and structures (= types = objects in X) in a categorical framework, allowing a unified
model theoretic treatment of a great variety of logics and type theories. In the following, only
the simple (although paradigmatic) example below will be of interest.

Example 5.3.7 (p : SubSet→ Set). Define SubSet to be the following category: objects are
pairs of sets (P,X) with P ⊂ X, morphisms f : (P,X) → (Q,Y) are functions f : X → Y
with f(P) ⊂ Q (equivalently P ⊂ f−1(Q)). An object (P,X) is said to be a predicate P
on X. Morphisms are—up to renaming via a function f—inclusions: the identity idX is a
morphism idX : (P,X) → (P ′, X) iff P ⊂ P ′ which we read as ‘P implies P ′’. Define the
functor p : SubSet → Set as second projection on objects and on morphisms as mapping
f : (P,X)→ (Q,Y) to f : X → Y .

The general definition of a predicate lifting involves the notion of a fibration (eg p :
SubSet → Set is a fibration) and a fibred functor. It would lead us too far to define these
notions here and we restrict attention to the special case of the example above.

Definition 5.3.8 (Predicate lifting). A predicate lifting of Σ : Set → Set is a functor Σ̄ :
SubSet→ SubSet such that the diagram

SubSet
Σ̄- SubSet

Set

p
?

Σ
- Set

p
?

7For introductions to categorical logic see eg Lambek and Scott [39], Pitts [44] and Jacobs [?]. The latter
also contains an introduction to fibrations.

5.4. EXERCISES 69

commutes. This means, in particular, that Σ̄ maps a predicate P on X to a predicate Σ̄P on
ΣX. Moreover, for any morphism f : X → Y in Set and any predicate Q on Y , it holds

Σ̄(f−1(Q)) = (Σf)−1(Σ̄Q) (5.8)

(recall that f−1(Q) is a predicate on X and Σ̄Q is a predicate on ΣY).

This definition spells out what it means for Σ̄ to be a fibred functor over Σ in case of the
fibration p : SubSet→ Set.8 The diagram illustrates why Σ̄ is called a lifting of Σ. The next
proposition relates natural transformations 2Id → 2Σ and predicate liftings for the fibration
p : SubSet→ Set. We first need a definition.

We call a natural transformation 2Id → 2Σ monotone if P ⊂ Q ⊂ X implies µX(P) ⊂
µX(Q). The natural transformations µ− : 2Id → 2Σ arising from natural transformations
µ : Σ→ P are monotone. For an example of a non-monotone natural transformation consider
Σ = Id and ¬ : 2Id → 2Id defined as complementation ¬X(P) = X − P .

Proposition 5.3.9. Let Σ : Set → Set and consider p : SubSet → Set. There is a bijection
between monotone natural transformations 2Id → 2Σ and predicate liftings of Σ.

Proof. First note that naturality of a transformation µ : 2Id → 2Σ means that µX(f−1(Q)) =
(Σf)−1(µY (Q)) for all f : X → Y and Q ⊂ Y ; compare this with (5.8).
Given µ : 2Id → 2Σ, define Σ̄(P,X) = (µX(P),ΣX). For a morphism f : (P,X) → (Q,Y)
define Σ̄f = Σf : (µX(P),ΣX) → (µY (Q),ΣY) which is indeed a morphism in SubSet since
µ is natural and monotone. Now check that the conditions of Definition 5.3.8 are satisfied.
Conversely, given Σ̄, we write (Σ̄P,ΣX) for Σ̄(P,X). Define µX(P) = Σ̄P . µ is monotone
since Σ̄ is a functor and natural due to (5.8).

Let us remark that the notion of a predicate lifting is more general than that of a monotone
natural transformation 2Id → 2Σ since it can be stated for arbitrary fibrations.

5.4 Exercises

Exercise 5.4.1. Suppose we added negation to coalgebraic logic CL. Show that in case
Σ = P

(2ϕ)† = {ϕ†} ∨ {}

gives a translation (−)† :ML → CL from modal logic into coalgebraic logic which preserves
and reflects satisfaction of formulas. [Hint: Use Proposition 5.1.7].

Exercise 5.4.2. Consider a signature Σ and the translation ck : Coalg(Σ) → K(Σ) as in
Section 5.2. The aim is to describe the image of ck in K(Σ) by modal formulas.

Since methods are functions, a model (X, (Ra)a∈A, X
V→ PProp) in the image of ck has the

following properties (recall A and Prop from Section 5.2 and let x ∈ X):

1. (m, i, e) ∈ V (x) ⇒ x has no R(m,i)-successor,

2. (m, i, o) ∈ V (x) ⇒ x has precisely one R(m,i)-successor,

8Readers familiar with fibrations will note that condition (5.8) expresses preservation of cartesian liftings.

70 CHAPTER 5. MODAL LOGICS FOR COALGEBRAS

3. V (x) contains precisely n proposition, one for each method.

Writing the boxes of the modal logic as [m, i] and the diamonds as 〈m, i〉 , consider the
following axiom schemes (assume Em and Om finite):

(Ax1) (m, i, e)→ ¬〈m, i〉>
(Ax2a) (m, i, o)→ 〈m, i〉>
(Ax2b) 〈m, i〉ϕ→ [m, i]ϕ

(Ax3a) (m, i, d)→ ¬(m, i, d′) for all d 6= d′, d, d′ ∈ Em +Om

(Ax3b)
∨
d∈Em+Om

(m, i, d)

and call Φ all modal formulas (in the language given by A and Prop) which are instances of
one of the schemes.

Now show the following (point (2) requires knowledge about completeness in modal logic
which was not presented in Chapter 4):

1. If a model K(Σ) satisfies Φ then it is bisimilar (behaviourally equivalent) to a model in
the image of ck. [Hint: Compare Table 4.1. The only axiom that requires a bit of work
is (Ax2b) because it does not define determinism on models (but on frames).]

2. Φ provides a complete axiomatisation of the image of ck and hence of Coalg(Σ).

3. Modal equivalence implies bisimilarity. [Hint: Models are image-finite]

4. The canonical model is the final coalgebra. [Hint: Use (3).]

Exercise 5.4.3 (µ−). Consider µ− : 2Id → 2Σ as defined in (5.4) in Section 5.3.

1. Show (5.2) ⇔ (5.3).

2. Show that µ : Σ→ P natural implies that µ− : 2Id → 2Σ is natural.

Exercise 5.4.4 (Atomic Propositions). The aim of this easy exercise is to compare different
formalisations of atomic propositions as natural transformations.

1. Let p : Σ→ 2 be a natural transformation. Use

ΣX
pX- 2

Σ1

Σ!
? p1- 2

id
?

to show that natural transformations Σ → 2 are in bijection with subsets of Σ1. This
can be interpreted as follows: The atomic propositions are precisely those observations
obtained by abstracting away from the state space X. Replacing X with the one-element
set 1, the remaining observations are the same for all coalgebras, that is ‘atomic’.

2. Show that natural transformations ν : Σ→ PProp are in bijection to families of natural
transformations (p̂ : Σ→ 2)p∈Prop. [Hint: Use the bijections PProp ' 2Prop '

∏
Prop 2.]

5.5. NOTES 71

3. Show that a natural transformation Σ→ 2 can be considered as natural transformation
1→ 2Σ which in turn is a special case of a natural transformation 2Id → 2Σ.

Exercise 5.4.5 (Atomic Propositions). Show that as for modal operators it is the natural-
ity condition that guarantees that the evaluation of atomic propositions is invariant under
behavioural equivalence.

5.5 Notes

The relationship of coalgebras and modal logic goes back to Barwise and Moss [10] where
both topics appear together. Coalgebraic logic is due to Moss [42]. The modal logic for
the signatures as classes is from [36]. The more general and difficult case of modal logics
for inductively defined signatures was developed by Rößiger [54, 52, 51, 53], but see also
Jacobs [29]; Jacobs [27] shows how temporal operators can be treated. The approach of
obtaining modalities from functors via natural transformations is due to Pattinson [43].

72 CHAPTER 5. MODAL LOGICS FOR COALGEBRAS

Chapter 6

Duality of Modal and Equational
Logic

We have seen so far that the theory of coalgebras provides us in a uniform way with a notion of
behavioural equivalence for a large number of different types of systems. And we argued that
modal logics are natural logics for coalgebras because they respect this notion of behavioural
equivalence.

Being convinced that (variants of) modal logics are the natural logics for coalgebras, we want
to answer in this chapter the question whether it is possible to make precise the intuition that

modal logic is to coalgebras what
equational logic is to algebras.

We will argue for a positive answer by showing that, up to logical equivalence, ie from a
semantic point of view,

modal logic is dual to equational logic.

6.1 Preliminaries

(The basic notions needed in this chapter are recalled.)

For a functor Σ on a category X , we denote the category of Σ-coalgebras by Coalg(Σ). We
assume that Coalg(Σ) has cofree coalgebras. In the case of X = Set, if we allow coalgebras
to have classes as carriers, we know by Aczel and Mendler’s theorem that cofree coalgebras
exist for all functors Σ.

We also assume that for each class of Σ-morphisms si : Ai → A, i ∈ I, there exist the union
of images (Chapter 2.2.3)

Ai
ei-

⋃
{Im(si) : i ∈ I}

m - A

(Σ, C)-coalgebras (Definition 2.2.13) are pairs consisting of a Σ-coalgebra and a valuation
(colouring)

(A , UA
c−→ C).

73

74 CHAPTER 6. DUALITY OF MODAL AND EQUATIONAL LOGIC

A cofree coalgebra FC over colours C comes together with a colouring εC : UFC → C. Recall
that

(FC , UFC
εc−→ C)

is the final (Σ, C)-coalgebra. We also assume that X has a final object 1 which implies that
F1 is the final Σ-coalgebra.

In case Σ = P and C = PProp Kripke frames are Σ-coalgebras and Kripke models are
(Σ, C)-coalgebras. Recall that (Σ, C)-coalgebras can also be considered as Σ×C-coalgebras.

6.2 Modal Formulas as Subcoalgebras

This section concentrates on the case X = Set. We can summarise the essence of the relation
of coalgebras and modal logic studied in Chapters 4 and 5 as follows.

Assume a signature Σ over sets and a class of formulas L. We write A for Σ-coalgebras,
v for colourings UA → C, a for elements of A. We call ϕ ∈ L modal formulas for Σ-
coalgebras in colours from C iff there is a relation |= of type A, v, a |= ϕ such that

formulas are invariant under (Σ, C)-behavioural equivalence. (6.1)

This means that for Σ-coalgebras A, A′ and colourings c : UA → C, c′ : UA′ → C and a
morphism f : A→ A′ respecting the colourings (ie c′ = Uf ◦ c) it holds that

A, c, a |= ϕ ⇔ A′, c′, f(a) |= ϕ

for all a ∈ UA.

|= gives rise to a satisfaction relation for (Σ, C)-coalgebras and for Σ-coalgebras via

A, v |= ϕ ⇐⇒ A, v, a |= ϕ ∀a ∈ UA (6.2)

A |= ϕ ⇐⇒ A, v |= ϕ ∀v : UA→ C (6.3)

We will now show that for any logic satisfying (6.1)–(6.3), we can characterise formulas—
up to logical equivalence—as subcoalgebras of cofree coalgebras. First note that (6.1) and
(6.2) imply that modal formulas are preserved under quotients, domains of morphisms, and
unions of (Σ, C)-coalgebras.1

Lemma 6.2.1 (Preservation modal formulas). Assume a modal formula ϕ in colours from
C.

1. If there is a (Σ, C)-morphism (A′, v′)→ (A, v) then A, v |= ϕ ⇒ A′, v′ |= ϕ.

2. If there is a surjective (Σ, C)-morphism (A, v)→ (A′, v′) then A, v |= ϕ ⇒ A′, v′ |= ϕ.

3. Assume a (Σ, C)-coalgebra (B,w), and a family of (Σ, C)-subcoalgebras (Ai, vi)
i
↪→

(B,w), i ∈ I. Let (A′, v′) be the union of all (Ai, vi), i ∈ I. Then Ai, vi |= ϕ for
all i ∈ I implies that A′, v′ |= ϕ.

1This is a classical result in modal logic, see Proposition 4.2.6. (Domains of morphisms corresponds to
domains of quotients and submodels; disjoint unions are a special case of unions; conversely, unions can be
obtained as disjoint unions and quotients.)

6.2. MODAL FORMULAS AS SUBCOALGEBRAS 75

Proof. We show (3), (1) and (2) are similar. Assume a′ ∈ UA′. Since (A′, v′) is the union of
the (Ai, vi), there is j ∈ I such that a′ ∈ UAj . It follows now from Aj , vj , a

′ |= ϕ and (6.1)
that A′, v′, a′ |= ϕ.

We first treat the case of formulas without propositional variables. In that case, formulas
correspond to subcoalgebras of the final coalgebra.

Let F1 be the final Σ-coalgebra and ϕ a formula. Define F1|ϕ to be the largest subcoalgebra
of F1 satisfying ϕ, ie the union of all subcoalgebras satisfying ϕ (see Chapter 2.2.3). Let us
denote by mϕ the inclusion F1|ϕ ↪→ F1. Now, satisfaction can be characterised as follows.

Proposition 6.2.2. A |= ϕ iff the (unique) morphism f : A→ F1 factors through mϕ

F1 �
mϕ

F1|ϕ

A

6
.................

�

f

Proof. ‘if’: First note that it follows from Lemma 6.2.1.2 and 6.2.1.3 that F1|ϕ |= ϕ. Now
suppose that f factors. Then Lemma 6.2.1.1 implies A |= ϕ. ‘only if’: A |= ϕ implies that
the image of f satisfies ϕ. Therefore f factors through mϕ by definition of F1|ϕ.

The case of formulas with colours (propositional variables) is a bit more complicated but
similar: Recall that the cofree Σ-coalgebra FC is the final (Σ, C)-coalgebra.

Definition 6.2.3 (Subcoalgebra corresponding to a formula). Let Σ be a signature on sets
and ϕ a modal formula for Σ-coalgebras in colours C. Define FC|ϕ to be the largest (Σ, C)-
subcoalgebra satisfying ϕ, ie

FC|ϕ =
⋃
{Im(v]) : A, v |= ϕ}

Denote by mϕ the inclusion FC|ϕ ↪→ FC.

Proposition 6.2.4. A |= ϕ iff all morphisms f : A→ FC factor through mϕ

FC �
mϕ

FC|ϕ

A

g

6
.................

�

f

Proof. ‘if’: First note that we have FC|ϕ, εC ◦mϕ |= ϕ by Lemma 6.2.1.2 and 6.2.1.3. Now
let v : UA→ C. Since FC is cofree there is v] : A→ FC with εC ◦Uv] = v. Since v] factors,
it follows A, v |= ϕ by Lemma 6.2.1.1.

‘only if’: Let f : A → FC. Note that f induces a colouring v = εC ◦ f on A and that
v] = f . Now, A |= ϕ implies A, v |= ϕ. Therefore f = v] factors through mϕ by definition of
FC|ϕ.

76 CHAPTER 6. DUALITY OF MODAL AND EQUATIONAL LOGIC

The proposition shows that satisfaction of modal formulas can be characterised alge-
braically by projectivity :

Definition 6.2.5 (Projective). We say that A is projective wrt B1
m−→ B0 iff all f : A→ B0

factor through m, ie iff for all f : A→ B0 there is f ′ : A→ B1 such that

B0
� m

B1

A

f ′

6
.................

�

f

commutes.

Remark 6.2.6. In Definition 6.2.3 we defined the subcoalgebra corresponding to a formula.
There are two variations possible.

1. One can work with the largest subset [[ϕ]]FC = {x ∈ UFC : FC, εC , x |= ϕ} satisfying
ϕ. The analogue to Proposition 6.2.4 then goes as follows. A |= ϕ iff for all morphisms
f : A→ FC

UFC � ⊃ [[ϕ]]FC

UA

6
................

�

Uf

Uf factors through [[ϕ]]FC ↪→ UFC.2

2. Whereas Definition 6.2.3 puts FC|ϕ =
⋃
{Im(f) : A, εC ◦ f |= ϕ and f : A→ FC}, one

can also work with the largest invariant subcoalgebra defined as

FC|ϕ =
⋃
{Im(f) : A |= ϕ and f : A→ FC}.

Proposition 6.2.4 also holds when we substitute FC|ϕ for FC|ϕ. Intuitively, whereas
(FC|ϕ, εC ◦Umϕ) is the largest Kripke submodel of (FC, εC) satisfying ϕ, FC|ϕ is the
largest Kripke subframe of FC satisfying ϕ.

A subcoalgebra m : A′ → A is called invariant iff A′ is projective wrt m, or in a more
logical notation, iff A′ |= m. That FC|ϕ is invariant means that FC|ϕ |= ϕ. Note that,
in general, FC|ϕ |= ϕ does not hold.

We conclude that invariant subcoalgebras of coalgebras cofree over C and modal for-
mulas in colours C are, up to logical equivalence of formulas, in a one-to-one correspon-
dence.

The three levels of subsets, submodels, and subframes correspond to the three levels of sat-
isfaction relations A, v, a |= ϕ, A, v |= ϕ, and A |= ϕ. Logical operators as conjunction
(intersection) or modal operators (see Chapter 5.3) are treated on the level of subsets. The
semantics via projectivity is more naturally formulated on the level of models or frames.

2Another variation would be to use [[ϕ]]FC = {x ∈ UFC : FC, x |= ϕ} as in [34].

6.3. EQUATIONS AS QUOTIENTS 77

To summarise this section, we have seen that to each modal formula ϕ corresponds a
subcoalgebra mϕ with cofree codomain such that satisfaction of ϕ is projectivity wrt mϕ. If
the converse holds, namely that every subcoalgebra of a cofree coalgebra with cofree codomain
corresponds to a formula, we say that the modal logic is expressive.

The import of the correspondence of formulas and subcoalgebras is that

• it allows to treat all logics for coalgebras we have seen or mentioned in the previous
chapters in a uniform way,

• it is abstract and hence easy to work with technically,3

• it precisely dualises the satisfaction of equations for algebras, see below.

6.3 Equations as Quotients

As noted already, to give an account on the duality of equational logic and modal logic, we
cannot restrict our attention to algebras over Set. Can we give an account on equations which
does not rely on X = Set? Yes, and it goes as follows.

For each set of equations Φ ⊂ UFX × UFX we can form the quotient

FX
eΦ- FX/Φ

of FX wrt the smallest congruence relation generated by Φ. Now, satisfaction can be char-
acterised as follows

Proposition 6.3.1. A |= Φ iff all f : FX → A factor through eΦ:

FX
eΦ- FX/Φ

A

f ′

?

.................

f

-

Proof. First show that

f : FX → A factors through eΦ iff ∀t, t′ ∈ UFX : eΦ(t) = eΦ(t′) ⇒ f(t) = f(t′) (6.4)

For “ ⇒ ” of the Proposition consider f : FX → A. Note that courtesy of F a U , there is
v : X → UA such that v] = f . To profit from (6.4) assume eΦ(t) = eΦ(t′), that is, (t, t′) are
in the in the smallest congruence generated by Φ. It follows from our assumption A |= Φ that
A, v |= Φ and hence v](t) = v](t′).4 That is, f(t) = f(t′) and by (6.4) f factors through eΦ.
For “⇐ ” of the Proposition, let (t, t′) ∈ Φ and v : X → UA. Since v] factors through eΦ, it
follows from (6.4) that v](t) = v](t′), hence A, v |= (t, t′).

3See for example the proof of theorem 6.5.2.
4Note that (t, t′) is not necessarily in Φ. But since (t, t′) is in the smallest congruence generated by Φ, ie

(t, t′) is in the intersection of all kernels of all morphisms whose kernels contain Φ, and since v] is a morphism
it also identifies t and t′.

78 CHAPTER 6. DUALITY OF MODAL AND EQUATIONAL LOGIC

Similarly, for each quotient e : FX → B with free domain FX we find a set of equations
Φe = {(t, t′) : e(t) = e(t′)} such that

Proposition 6.3.2. A |= Φe iff all f : FX → A factor through e.

That is, in the case of X = Set, the two propositions above show that we can—from a
semantic point of view—replace equations by quotients and describe satisfaction by injectivity:

Definition 6.3.3 (Injective). We say that A is injective wrt B0
e−→ B1 iff all f : B0 → A

factor through e, ie iff for all f : B0 → A there is f ′ : B1 → A such that

B0
e - B1

A

f ′

?

.................

f
-

commutes.

To summarise, we have seen that to each set of equations Φ corresponds a quotient eΦ

with free domain such that satisfaction of Φ is injectivity wrt eΦ. And, conversely, to each
quotient with free domain corresponds a set of equations.

6.4 Duality of Modal and Equational Logic

To summarise the two previous sections we can now extend Table 2.1 on page 41 as follows.

Σ : X → X Σop : X op → X op

Coalg(Σ) Alg(Σop)

factorisation system (E,M) factorisation system (M,E)

subcoalgebras m ∈M quotients e ∈ E

(formulas are) (sets of equations are)

subcoalgebras of cofree coalgebras quotients of free algebras

(modal rules are) (implications are)

subcoalgebras quotients

(satisfaction is)

projectivity injectivity

The duality of modal rules and implications is explained in the Exercises.

6.5 A (Co)Variety Theorem

This section gives as an application of the duality of modal and equational logic a proof of
the following two theorems:

6.5. A (CO)VARIETY THEOREM 79

Theorem 6.5.1 (Variety theorem, HSP theorem). Let Σ : Set→ Set be a functor such that
Alg(Σ) has free algebras. Then a class B of Σ-algebras is equationally definable iff B is closed
under quotients, embeddings, and products.

Theorem 6.5.2 (Covariety theorem). Let Σ : Set→ Set be a functor such that Coalg(Σ) has
cofree coalgebras. Then a class B of Σ-coalgebras is definable by an expressive modal logic for
Σ-coalgebras iff B is closed under embeddings, quotients, and coproducts.

Note that these theorems are not each other’s dual because Set has not been dualised. But
our proof for second theorem presented below dualises to a proof of the first theorem if we
are careful to keep track of the properties used in the proof. But before discussing this in
more detail, let us see the proof.

Proof of the covariety theorem. “only if” is the easy direction which is an immediate corollary
of Lemma 6.2.1. Nevertheless, we will take the time to show how the preservation properties
can also be deduced using the properties of factorisation systems and projectivity.

We show that ϕ is invariant under embeddings, quotients, and coproducts. Denote by mϕ

the subcoalgebra corresponding to ϕ (see Definition 6.2.3).

Let e : A → A′ be a quotient. We show that A projective wrt mϕ implies A′ projective wrt
mϕ. Consider

• �
mϕ •

A′

f

6

� e....
....

....
....

....
....

....
..-

A

g

6

A projective wrt mϕ implies that for all f as in the diagram there is g making the square
commute. Now, the dotted morphism exists due to unique diagonalisation (see 2.2.5) and
shows that A′ projective wrt mϕ.

For coproducts consider

• �
mϕ •

∐
Ai

f

6

�ini
....

....
....

...
....

....
....

.-

Ai

gi

6

Ai projective wrt mϕ implies that for all f as in the diagram there are gi making the squares
commute for all i. Now, the dotted morphism exist due to unique diagonalisation (see Propo-
sition 2.2.12) and shows that

∐
Ai is projective wrt mϕ.

For an embedding m : A′ → A consider

FC �
mϕ •

A

g

6

� m
A′

�

f

80 CHAPTER 6. DUALITY OF MODAL AND EQUATIONAL LOGIC

Co-Variety Theorem Variety Theorem

U : C → X

C has cofree objects FC C has free objects FX

C has a factorisation system such that:

C has union of images C has intersection of kernels

m : A′ → A embedding ⇒
all f : A′ → FC factor through m:

FC

A

6
.................
� m

A′

�

f

e : A→ A′ quotient ⇒
all f : FX → A′ factor through e:

FX

A
?

................. e - A′

f

-

∀A . ∃ embedding A→ FUA ∀A . ∃ quotient FUA→ A

Table 6.1: Properties used in the proof of the (co)variety theorem

For all f as in the diagram, there is g : A→ FC such that the triangle commutes (check that
this is due to FC being cofree). Since A is projective wrt mϕ, g factors through mϕ, hence
f factors as well.

“if”: The main point is to find the defining modal formulas. Consider the collection of
morphisms (si : Bi → FC)i∈I which consists of all morphisms with codomain FC and the
domain in B. Let mC : F ′C → FC be the union of the images of the si (see Chapter 2.2.3).
Since we assume an expressive modal logic there is a formula ϕC corresponding to mC (ie
A |= ϕC iff A projective wrt mC). Let Φ = {ϕC : C ∈ Set}. We show that B is defined by Φ,
ie

B = {A ∈ Coalg(Σ) : A |= Φ}.

‘⊂’: By definition of the mC , all B ∈ B are projective wrt to the mC and hence satisfy the
ϕC .

‘⊃’: Suppose A |= Φ. In particular, A |= ϕUA, ie A is projective wrt mUA : F ′UA → FUA.
Note that there is an embedding A → FUA. This embedding factors through mUA, hence
A is a subcoalgebra of F ′UA. Since B is closed under coproducts and quotients we have
F ′UA ∈ B (see the proof of Proposition 2.2.10) and since B is closed under embeddings it
follows A ∈ B.

Let us now analyse the duality of the two theorems. Table 6.1 lists the properties we used to
prove the covariety theorem. That is, in fact, we proved

6.6. EXERCISES 81

Proposition 6.5.3. Let U : C → X be a functor satisfying the properties of the left column of
Table 6.1. Then a class B ⊂ C is projective wrt to a class of embeddings with cofree codomains
iff B is closed under embeddings, quotients, and coproducts.

Since U : C → X satisfies the properties of the left column of Table 6.1 iff Uop satisfies
the properties of the right column, the same proof shows the dual theorem

Proposition 6.5.4. Let U : C → X be a functor satisfying the properties of the right column
of Table 6.1. Then a class B ⊂ C is injective wrt to a class of quotients with free domains iff
B is closed under quotients, embeddings, and products.

These two propositions are each other duals and the (co)variety theorems are their corollaries
obtained by instantiating C with (co)algebras and using the correspondence of subcoalge-
bras/formulas and, respectively, of quotients/equations.

6.6 Exercises

Exercise 6.6.1 (Implications as quotients). An implication
∧

Φ → (t, t′) in variables from
X consists of a set Φ ⊂ UFX × UFX and a pair (t, t′) ∈ UFX × UFX. Define for an
assignment v : X → UA

A, v |=
∧

Φ→ (t, t′) iff A, v |= Φ ⇒ A, v |= (t, t′)

and A |=
∧

Φ→ (t, t′) iff A, v |=
∧

Φ→ (t, t′) for all assignments v.

To find the quotient corresponding to an implication i =
∧

Φ → (t, t′) consider, similarly to
Section 6.3, the quotient ei as in

FX/Φ
ei - FX/Φ ∪ {(t, t′)}

FX

eΦ

6
................

......
......

......
......

......
......

......

e (Φ
∪{(

t,t
′)})

-

Show the following

1. A |= i iff A is injective wrt ei.

2. For each quotient e there is a class of implications Φ such that A |= Φ iff A is injective
wrt e.

Exercise 6.6.2 (Modal rules as subcoalgebras). A modal rule ϕ/ψ in colours from C consists
of two formulas ϕ,ψ in colours from C. For a colouring v : UA→ C, let

A, v |= ϕ/ψ iff A, v |= ϕ ⇒ A, v |= ψ

and A |= ϕ/ψ iff A, v |= ϕ/ψ for all colourings v.

For each modal rule ϕ/ψ find an embedding (subcoalgebra) m such that A |= ϕ/ψ iff A is
projective wrt m. [Hint: Dualise the diagram of the previous exercise.]

82 CHAPTER 6. DUALITY OF MODAL AND EQUATIONAL LOGIC

The aim of the next three exercises is to show that the (co)variety theorems can be
formulated without referring to the base category. The idea is to replace free objects by
‘projective objects’ which are defined without reference to the forgetful functors.

Exercise 6.6.3 (Projective objects, enough projectives). In a category with a factorisation
system, an object B is called projective iff for all quotients e : A → A′ and all arrows
f : B → A′ there is an arrow g : B → A such that f = e ◦ g:

B

A

g

?

.................

e
- A′

f

-

The category is said to have enough projectives iff for each object A there is a projective
object B and a quotient B → A.

For a category Alg(Σ) over Set which has free algebras FX for each set X show the following.

1. Free algebras are projective.

2. There is a quotient FUA→ A for all algebras A.

3. Alg(Σ) has enough projectives.

4. B is projective iff it is a retract of a free algebra.

Exercise 6.6.4. The aim is to show that, concerning satisfaction of equations, there is no
need not to distinguish between quotients with free domain and quotients with projective
domain. Let U : Alg(Σ) → Set have free algebras and consider a quotient e : B → A with
projective domain B. Let e′ be the quotient given by the following pushout

B
e - A

FUB

m

?
..................
e′
- •
?

..................

where FUB is the free algebra over the carrier of B and m exists because B is a retract of
FUB (see (4) of the previous exercise).

Show that for any C ∈ Alg(Σ) it holds C injective wrt e iff C injective wrt e.

Exercise 6.6.5 (variety theorem ‘without a base category’). Show the following variation of
the variety theorem (or its dual): Let C be a category with factorisation system, intersection
of kernels, and enough projectives. Then a class B ⊂ C is injective wrt to a class of quotients
with projective domains iff B is closed under quotients, embeddings, and products. [Hint:
Note that ‘having enough projectives’ is just the last two conditions in the right column of
Table 6.1.]

6.7. NOTES 83

6.7 Notes

This chapter is based on [34] where, to the author’s knowledge, the idea of the duality of
modal and equational logic was expressed for the first time. That the duality can be made
precise by understanding modal formulas as subcoalgebras and equations as quotients was
shown in [33, 32]. The concept of equations as quotients and satisfaction as injectivity as
well as categorical proofs of the variety and similar theorems are due to Banaschewski and
Herrlich [7]. A textbook presentation is given in Adámek, Herrlich, Strecker [3], Chapter 16.
Our proof of the covariety theorem was obtained by dualising a corresponding proof in [7].
The idea to derive a dual of the variety theorem by dualising injectivity to projectivity was
discovered independently also by Roşu [48] and Awodey and Hughes [6]. The duality of
implications and modal rules is treated in [35].

The duality of Kripke frames and modal algebras (see eg [12]) differs from the duality of
algebras and coalgebras. More generally, the duality of Kripke frames and modal algebras is
not a categorical one since the embedding of a Kripke frame into its ultrafilter extension is
not a coalgebra morphism. In case of deterministic signatures, however, the duality is indeed
categorical as shown by Jacobs [28].

A covariety theorem appears already in Rutten [60] but there is no discussion of what
an appropriate logic for coalgebras could be. Gumm and Schröder [20] and Roşu [50] treat
the case without colourings (ie C = 1) and Gumm [19] presents a co-variety theorem where
‘coequations’ ϕ are points in the carrier of cofree coalgebras and A, v |= ϕ iff ϕ /∈ Im(v]).
Goldblatt [17, 16] restricts attention to specific signatures (polynomial functors) and proves
definability results for finitary logics for coalgebras.

84 CHAPTER 6. DUALITY OF MODAL AND EQUATIONAL LOGIC

Appendix A

Category Theory

We collect the definitions of category theory needed in the course and not appearing in the
text. Natural transformations are only used in Chapter 5.3 and adjunctions, as far as needed,
are explained in the text. For introductory texts on category theory the reader is referred to
one of [40, 3, 5, 8].

A category A consists of a class of objects, also denoted by A, and, for all objects A,B,
of a set of arrows, also called morphisms1, A(A,B). We write f : A → B for f ∈ A(A,B)
and call A the domain, B the codomain of f . Moreover, for all A(A,B), A(B,C) there is an
operation

◦A,B,C : A(A,B) × A(B,C) → A(A,C)

(g : A→ B, f : B → C) 7→ f ◦A,B,C g : A→ C

We drop the subscript and read f ◦ g as ‘f after g’. There is also for each A ∈ A an ‘identity’
idA : A→ A. All this data has to satisfy

f ◦ (g ◦ h) = (f ◦ g) ◦ h
id ◦ f = f

f ◦ id = f

We dropped the subscripts which means that these equations have to be satisfied for all
instantiations matching the required typing for ◦.

Set is the category of sets and functions. A discrete category is a category which has only
identities as arrows.

m : B → C is mono iff m ◦ f = m ◦ f ′ ⇒ f = f ′ for all A ∈ A and all f, f ′ : A → B.
e : A→ B is epi iff f ◦ e = f ′ ◦ e ⇒ f = f ′ for all C ∈ A and all f, f ′ : B → C. In case that
for two arrows m : A → B and e : B → A it holds that e ◦m = idA then e is split epi, m
split mono, and A a retract of B. (Show that split epis are epi and split monos are mono.)
An arrow is iso iff it is split mono and split epi. If there is an iso i : A → B then A and B
are called isomorphic, written A ' B.

1We tend to use ‘arrow’ in the general case and ‘morphisms’ in the case where objects are structures as for
example algebras or coalgebras.

85

86 APPENDIX A. CATEGORY THEORY

Exercise A.0.1 (Monos, epis, isos in Set). A function is injective iff it is mono. A function
with non-empty domain is injective iff it is split mono. A function is surjective iff it is epi iff
it is split epi. A function is iso iff it is mono and epi.

A functor H : A → X from a category A to a category X consists of an operation H0

mapping objects of A to objects of X and of an operation H1 mapping arrows of A to arrows
of X such that, for f ∈ A(A,B), H1(f) ∈ X (H0(A), H0(B)) and

H(idA) = idH(A)

H(f ◦ g) = H(f) ◦ (g)

where, following common usage, subscripts of H have been dropped. Examples for functors
can be found in Chapter 2.1.

Exercise A.0.2. A functor H : Set → Set maps surjective functions to surjective functions
and injective functions with non-empty domain to injective functions.

For the dual of a category and a functor see Chapter 2.4.

A natural transformation τ : G→ H from a functor G : A → X to a functor H : A →
X consists of arrows τA : GA → HA for each A ∈ A such that for each f : A → B in A the
following diagram

GA
τA - HA

GB

Gf

?

τB
- HB

Hf

?

commutes.

A diagram is a functor D : I → A. The name diagram indicates that we think of D as
indexing objects in A. We therefore denote objects in I by i, j. A cone (A, (ci : A→ Di)i∈I)
over a diagram D consists of an object A ∈ A and arrows (ci : A → Di)i∈I such that for all
f : i→ j in I

A

Di
Df

-
�

c i

Dj

c
j

-

commutes.

A limit of the diagram D is a cone (A, (ci : A→ Di)i∈I) satisfying the following universal
property : for any cone (A′, (c′i : A′ → Di)i∈I) over D there is a unique ‘mediating’ arrow

87

h : A′ → A such that for all i ∈ I
A′

Di �
ci

�

c
′
i

A

h

?

.................

commutes. (A, (ci : Di → A)i∈I) is a colimit of D iff (Aop, (cop
i)i∈I) is a limit of Dop. A

weak (co)limit is defined like a (co)limit but the mediating arrow need not be unique.

Exercise A.0.3. Show that two different limits of the same diagram are isomorphic. Moreover,
they are canonically isomorphic, that is, the isomorphisms are uniquely determined.

A final object, also called terminal object, is the limit of an empty diagram (ie I is
empty). That is, Z ∈ A is final iff for all A ∈ A there is a unique morphism A → Z in
A(A,Z). An initial object is, dually, the colimit of an empty diagram. That is I ∈ A is
initial iff for all A ∈ A there is a unique morphism I → A in A(I, A).

Exercise A.0.4. Show that in Set the initial object is the empty set and a terminal object is
a set containing precisely one element.

A product of D1 and D2 is the limit (D1×D2, π1 : D1×D2→ D1, π2 : D1×D2→ D2)
indicated below

A′

D1×D2

h......?

.......

D1

�

c
′ 1

�

π 1

D2

c ′2

-

π
2

-

(I is here the discrete category with two objects {1, 2}.)
Exercise A.0.5. Show that in Set the product is isomorphic to the cartesian product (with πi
being the projection to the i-th component).

Exercise A.0.6. Generalise the definition of the binary product to a definition of an infinite
product.

A pullback (dual notion: pushout) is a limit of a diagram 2

D1 D2

D0
� D

gD
f -

2I is here the category with objects {0, 1, 2} and arrows (besides identities) f : 1→ 0 and g : 2→ 0.

88 APPENDIX A. CATEGORY THEORY

that is, a cone (A, ci : A→ Di) such that for all (A′, c′1, c
′
2) with Df ◦ c′1 = Dg ◦ c′2 there is a

unique h : A′ → A such that

A′

A

h......?

.......

D1

�

c
′ 1

�

c 1

D2
c ′2

-
c
2

-

D0
�

D
gD

f
-

commutes.

Exercise A.0.7. Show that in Set pullbacks exist and are given by the subset of D1 × D2
‘satisfying the constraint Df = Dg’, that is, by {(d1, d2) ∈ D1×D2 : Df(d1) = Dg(d2)}.

A functor H : A → A weakly preserves pullbacks iff it maps pullbacks (A, c1, c2) of
a diagram D to weak pullbacks (HA,Hc1, Hc2) of the diagram HD. H preserves weak
pullbacks iff it maps weak pullbacks (A, c1, c2) to weak pullbacks (HA,Hc1, Hc2). If A has
pullbacks then H weakly preserves pullbacks iff H preserves weak pullbacks.

A coproduct (D1 +D2, in1 : D1 → D1 +D2, in2 : D2 → D1 +D2) of D1 and D2 is the
colimit given by

A′

D1 +D2

h......

6
.......

D1

c
′ 1

-

in
1

-

D2

�

c ′2

�

in
2

Exercise A.0.8. Show that in Set the coproduct is isomorphic to the disjoint union.

Given a family of objects (Ai)i∈I the coproduct of the Ai is denoted by
∐
I Ai.

3

3∐
I Ai is defined as the colimit of the diagram given by the discrete category I with I as the set of objects

and D : I → A mapping i 7→ Ai.

89

Exercise A.0.9. Let X be a category with coproducts, Σ : X → X a functor, and I a set.

1. Define
∐
I on arrows and show that it becomes a functor.

2. Use the universal property of the coproduct to show that there is a natural transforma-
tion τ :

∐
I Σ→ Σ

∐
I .

3. Explain τ in case of Σ = P.

4. Given a family of coalgebras (Xi, ξi), let (X, ξ) be their coproduct as defined in Chap-
ter 2.2.1. Show that ξ = τX ◦

∐
I ξi.

That is, the coproduct of systems is given by the coproduct of the transition structures
followed by the canonical natural transformation

∐
I Σ→ Σ

∐
I .

An adjunction between two functors U : A → X and F : X → A is given by a bijection

(−)∗A,C : X (UA,C)
∼−→ A(A,FC)

which is natural in A and C. We write U a F and call U the left adjoint and F the right
adjoint. Two different characterisations of adjunctions are the following:

Proposition A.0.10. The functor U : A → X has a right adjoint iff for each C ∈ X there
is FC ∈ A and εC : UFC → C in X such that for any A ∈ A and any c : UA → C in X
there is a unique morphism c] : A→ FC such that the triangle

UFC FC

C �
c

�

εC

UA

Uc]

6

A

c]

6

commutes. Then ε is a natural transformation and F can be extended in a unique way to a
functor X → A.

Remark. c] in the proposition was denoted by c∗A,C in the definition of adjunction.

Proposition A.0.11. The functor U : A → X has a left adjoint iff for each X ∈ X there is
FX ∈ A and ηX : X → UFX in X such that for any A ∈ A and any v : X → UA there is a
unique morphism v] : FX → A such that the triangle

UFX FX

X
v
-

ηX

-

UA

Uv]

?
A

v]

?

commutes. Then η is a natural transformation and F can be extended in a unique way to a
functor X → A.

Exercise A.0.12. Show that (−× I) is left adjoint to (−)I for any set I. (Then (−)∗X,X maps

algebras X × I → X to the corresponding coalgebras X → XI , see Chapter 1.3.1.)

90 APPENDIX A. CATEGORY THEORY

Appendix B

Notation

〈〉 empty word

I∗ finite words over I

I+ I∗\{〈〉}

0 initial object

1 final object

Epi class of all epis

Mono class of all monos

Surj class of all surjective func-
tions/morphisms

Inj class of all injective func-
tions/morphisms

idA identity morphism on A

Id identity functor

PX set of subsets of X

PωX set of finite subsets of X

PκX set of subsets of X with car-
dinality < κ

91

92 APPENDIX B. NOTATION

Bibliography

[1] P. Aczel. Non-Well-Founded Sets. CSLI, Stanford, 1988.

[2] P. Aczel and N. P. Mendler. A final coalgebra theorem. In Category Theory and Computer
Science, volume 389 of LNCS, 1989.

[3] J. Adámek, H. Herrlich, and G. E. Strecker. Abstract and Concrete Categories. John
Wiley & Sons, 1990.

[4] M. A. Arbib and E. G. Manes. Adjoint machines, state-behaviour machines, and duality.
Journ. of Pure and Applied Algebra, 6, 1975.

[5] A. Asperti and G. Longo. Categories, Types, and Structures: An Introduction to Category
Theory for the Working Computer Scientist. MIT Press, 1991.

[6] S. Awodey and J. Hughes. The coalgebraic dual of Birkhoff’s variety theorem. Technical
Report CMU-PHIL-109, Carnegie Mellon University, Pittsburgh, PA, 15213, November
2000.

[7] B. Banaschewski and H. Herrlich. Subcategories defined by implications. Houston J.
Math., 2, 1976.

[8] M. Barr and C. Wells. Category Theory for Computing Science. Prentice-Hall Interna-
tional, 1990.

[9] F. Bartels. Generalised coinduction. In CMCS’01, volume 44.1 of ENTCS. Elsevier,
2001.

[10] J. Barwise and L. Moss. Vicious Circles. CSLI, 1996.

[11] M. Bidoit, R. Hennicker, and A. Kurz. On the duality between observability and reach-
ability. In FoSSaCS’01, LNCS 2030, 2001.

[12] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. CUP, 2001.

[13] E. de Vink and J. Rutten. Bisimulation for probabilistic transition systems: a coalgebraic
approach. In Proceedings of ICALP’97, volume 1256 of LNCS, 1997.

[14] E.A. Emerson. Temporal and modal logic. In Handbook of Theoret. Comput. Sci.,
volume 1. Elsevier, 1990.

[15] R. Goldblatt. Logics of Time and Computation, volume 7 of CSLI Lecture Notes. CSLI,
1992. Second Edition.

93

94 BIBLIOGRAPHY

[16] R. Goldblatt. A calculus of terms for coalgebras of polynomial functors. In CMCS’01,
ENTCS 44, 2001.

[17] R. Goldblatt. What is the coalgebraic analogue of Birkhoff’s variety theorem? Theor.
Comp. Sci., 266, 2001.

[18] H. P. Gumm. Elements of the general theory of coalgebras. LUATCS’99, 1999.

[19] H. P. Gumm. Equational and implicational classes of coalgebras. Theor. Comp. Sci.,
260, 2001.

[20] H. P. Gumm and T. Schröder. Covarieties and complete covarieties. In CMCS’98,
volume 11 of ENTCS, 1998.

[21] H. P. Gumm and T. Schröder. Products of coalgebras. Algebra Universalis, 46(1–2),
2001.

[22] M. Hennessy and R. Milner. Algebraic laws for nondeterminism. Journal of the Associ-
ation for Computing Machinery, 32, 1985.

[23] C. Hermida and B. Jacobs. Structural induction and coinduction in a fibrational setting.
Information and Computation, 145(2), 1998.

[24] B. Jacobs. Hompage at http://www.cs.kun.nl/~bart/.

[25] B. Jacobs. Automata and behaviours in categories of processes. Technical Report CS-
R9607, CWI, 1996.

[26] B. Jacobs. Objects and classes, co-algebraically. In Object-Orientation with Parallelism
and Persistence. Kluwer, 1996.

[27] B. Jacobs. The temporal logic of coalgebras via galois algebras. Technical Report CSI-
R9906, Computing Science Institute Nijmegen, 1999.

[28] B. Jacobs. Towards a duality result in coalgebraic modal logic. In CMCS’00, ENTCS
33, 2000.

[29] B. Jacobs. Many-sorted coalgebraic modal logic: a model-theoretic study. Theor. Inform.
Appl., 35, 2001.

[30] B. Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induction. EATCS Bulletin,
62, 1997.

[31] F. Kröger. Temporal Logic of Programs. Springer, 1987.

[32] A. Kurz. Logics for Coalgebras and Applications to Computer Science. PhD thesis, LMU,
2000.

[33] A. Kurz. Modal logic is dual to equational logic. January 2000.
http://www.informatik.uni-muenchen.de/~kurz.

[34] A. Kurz. A co-variety-theorem for modal logic. In Advances in Modal Logic 2, pages
367–380. CSLI, 2001. papers from the second workshop on ”Advances in Modal logic,”
held in Uppsala, Sweden, 1998.

http://www.cs.kun.nl/~bart/

BIBLIOGRAPHY 95

[35] A. Kurz. Modal rules are co-implications. In CMCS’01, ENTCS 44, 2001.

[36] A. Kurz. Specifying coalgebras with modal logic. Theor. Comp. Sci., 260, 2001.

[37] A. Kurz and R. Hennicker. On institutions for modular coalgebraic specifications. Theor.
Comp. Sci., 280, 2002.

[38] A. Kurz and D. Pattinson. Coalgebras and modal logics for parameterised endofunctors.
Technical Report SEN-R0040, CWI, 2000.

[39] J. Lambek and P. Scott. Introduction to Higher Order Categorical Logic, volume 7.
Cambridge University Press, Cambridge, England, 1986.

[40] S. Mac Lane. Category Theory for the Working Mathematician. Springer, 1971.

[41] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.
Springer, 1992.

[42] L. Moss. Coalgebraic logic. Ann. Pure Appl. Logic, 96, 1999.

[43] D. Pattinson. Semantical principles in the modal logic of coalgebras. In STACS’01.

[44] A. M. Pitts. Categorical logic. In Handbook of Logic in Computer Science, volume 6.
Oxford University Press, 1995.

[45] J. Power and H. Watanabe. An axiomatics for categories of coalgebras. In CMCS’98,
volume 11 of ENTCS, 1998.

[46] H. Reichel. Initial computability, algebraic specifications, and partial algebras. Clarendon
Press, 1987.

[47] H. Reichel. An approach to object semantics based on terminal co-algebras. Math.
Structures Comp. Sci., 5, 1995.

[48] G. Roşu. Personal Communication, August 1999.

[49] G. Roşu. Hidden Logic. PhD thesis, University of California at San Diego, 2000.

[50] G. Roşu. Equational axiomatizability for coalgebra. Theor. Comp. Sci., 260, 2001.

[51] M. Rößiger. Coalgebras and modal logic. In CMCS’00.

[52] M. Rößiger. Languages for coalgebras on datafunctors. In CMCS’00, volume 19 of
ENTCS, 1999.

[53] M. Rößiger. Coalgebras, Clone Theory, and Modal Logic. PhD thesis, Dresden University
of Technology, 2000.

[54] M. Rößiger. From modal logic to terminal coalgebras. Theor. Comp. Sci., 260, 2001.

[55] J. Rutten. Automata and coinduction - an exercise in coalgebra. In CONCUR’98.

[56] J. Rutten. A structural co-induction theorem. Technical Report CS R 9346, CWI,
Amsterdam, 1993.

96 BIBLIOGRAPHY

[57] J. Rutten. A calculus of transition systems (towards universal coalgebra). In Modal Logic
and Process Algebra, volume 53 of CSLI Lecture Notes. CSLI, 1995.

[58] J. Rutten. Coalgebra, concurrency, and control. Report SEN-R9921, CWI, Amsterdam,
1999.

[59] J. Rutten. Behavioural differential equations: A coinductive calculus of streams, au-
tomata, and power series. Report SEN-R0023, CWI, Amsterdam, 2000.

[60] J. Rutten. Universal coalgebra: A theory of systems. Theor. Comp. Sci., 249, 2000.

[61] J. Rutten and D. Turi. On the foundations of final semantics: Non-standard sets, metric
spaces, partial orders. Report CS-R9241, CWI, Amsterdam, 1992.

[62] J. Rutten and D. Turi. Initial algebra and final coalgebra semantics for concurrency.
Report CS-R9409, CWI, Amsterdam, 1994.

[63] K. Segerberg. An essay in classical modal logic. Filosofiska Studier 13, 1971.

[64] C. Stirling. Modal and temporal logics. In Handbook of Logic in Computer Science,
volume 2. Oxford University Press, 1992.

[65] D. Turi and J. Rutten. On the foundations of final coalgebra semantics: non-well-founded
sets, partial orders, metric spaces. Math. Structures Comp. Sci., 8, 1998.

[66] J. van Benthem. Modal Correspondence Theory. PhD thesis, University of Amsterdam,
1976.

[67] J. van Benthem. Modal Logic and Classical Logic. Bibliopolis, 1983.

[68] S. J. Vickers. Topology Via Logic. CUP, 1989.

[69] W. Wechler. Universal Algebra for Computer Scientists, volume 25 of EATCS Mono-
graphs on Theor. Comp. Sci. Springer, 1992.

[70] J. Worrell. Toposes of coalgebras and hidden algebra. In CMCS’98, volume 11 of ENTCS,
1998.

[71] J. Worrell. On Coalgebras and Final Semantics. PhD thesis, Oxford University Com-
puting Laboratory, 2000.

	Systems – An Introduction
	Systems and Processes
	Ingredients of a Theory of Systems
	Interfaces
	The Black Box View of a Process
	The Black Box View of a System
	Morphisms of Systems
	The Black Box View of the Class of all Systems
	Behavioural Equivalence
	Bisimulation
	Coinduction
	Summary and Exercise

	An Extended Example: Deterministic Automata
	Systems with Input
	Moore and Mealy Automata
	The Final Automaton of all Languages

	More Examples
	Objects and Classes
	Datatypes
	Transition Systems

	Summary of Examples
	Exercises and Problem
	Notes

	Coalgebra
	Coalgebras
	Basic Constructions on Coalgebras
	Coproducts
	Quotients and Subcoalgebras
	Unions
	Final and Cofree Coalgebras

	Algebras
	Duality
	Extended Example: Limits
	Exercises
	Notes

	Coalgebra II
	Colimits
	Behaviours
	Behavioural Equivalence and Bisimulation
	Existence of Final and Cofree Coalgebras
	Final Coalgebras via Union of All Behaviours
	Final Coalgebras via Final Sequences

	Notes

	Modal Logic
	Kripke Semantics
	Introduction
	Frames and Models
	Definability
	Multimodal Logics

	Bisimulation
	The Logic of Bisimulation
	Exercises
	Notes

	Modal Logics for Coalgebras
	Coalgebraic Logic
	Logics Designed for Specific Signatures
	Modalities from Functors
	Modalities Induced by Natural Transformations P
	Modalities Induced by Predicate Liftings

	Exercises
	Notes

	Duality of Modal and Equational Logic
	Preliminaries
	Modal Formulas as Subcoalgebras
	Equations as Quotients
	Duality of Modal and Equational Logic
	A (Co)Variety Theorem
	Exercises
	Notes

	Category Theory
	Notation

