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We show how coalgebras can be presented by operations and equations. This is a special

case of Linton’s approach to algebras over a general base category X , namely where X is

taken as the dual of sets. Since the resulting equations generalise coalgebraic coequations

to situations without cofree coalgebras, we call them coequations. We prove a general

co-Birkhoff theorem describing covarieties of coalgebras by means of coequations. We

argue that the resulting coequational logic generalises modal logic. This relies on the fact

that coalgebraic operations respect an appropriate notion of bisimulation and can be

considered as modal operators.

Introduction

Let us start with recalling that universal algebras are defined as sets equipped with

operations subjected to equations. Operations can be infinitary. Given a setX , a mapping

f : AX → A is an X-ary operation on a set A. One is often working with Y -tuples

fy : AX → A, y ∈ Y , of X-ary operations on a set A. These Y -tuples uniquely correspond

to mappings f : AX → AY . Starting with a set of operations one always has free algebras.

But there are important examples of universal algebras given by a class of operations

which still have free algebras (complete semilattices, compact Hausdorff spaces). Linton

showed in (Linton, 1966) that equationally defined universal algebras are, under the

existence of free algebras, precisely the monadic categories over Set. Moreover, in (Linton,

1969), he generalised the result from sets to any base category X . In that work, operations

are still mappings

f : AX → AY

where A, X , and Y are objects in X and AX is the set of all morphisms X → A.

Note that, in Set, AX coincides with the X-fold product of A. In general, however, it

is important to consider AX as a set of morphisms because the other approach would

be too special for a general base category X . In particular, it would be too special for
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X = Setop. (Davis, 1972) used Linton’s approach for introducing universal coalgebras

over Set even without assuming the existence of cofree coalgebras (i.e., free algebras over

Setop). The second author then considered Linton’s algebras over a general base category,

without the existence of free algebras, in (Rosický, 1981).

There is another way of defining universal algebras over a general base category. One

starts with an endofunctor F : X → X and defines F -algebras as objects A equipped

with a morphism α : FA → A. These algebras are called F -dynamics in (Manes, 1976)

and were extensively studied by Trnková and her students in Prague, cf. (Adámek and

Trnková, 1990). Notably, (Reiterman, 1983) compared F -algebras with algebras given by

operations and equations.

There is a revived interest in universal coalgebra motivated by its connections with the

theory of systems, see (Rutten, 2000). Coalgebras are here understood as F -algebras over

X = Setop, i.e., as sets A equipped with a mapping α : A → FA where F : Set → Set.

Our aim is to show the potential of defining coalgebras by means of operations and

equations.

Outline of the Paper We investigate coequational categories, that is, categories of

coalgebras that are presented by operations and equations. It turns out that coequa-

tional categories subsume categories of coalgebras for a functor or for a comonad (Sec-

tion 2). To understand the nature of coalgebraic operations we introduce a novel notion

of behavioural equivalence (generalising Aczel-Mendler bisimulation) and establish that

coalgebraic operations are predicate transformers that respect behavioural equivalence

(Section 3). We then introduce equations in implicit operations for coalgebras. Since

they generalise previous concepts of coalgebraic coequations to situations without cofree

coalgebras, we call them coequations. We prove a general co-Birkhoff theorem showing

that covarieties of coalgebras are always definable by coequations (Section 4). Since our

coequations on the one hand dualise equations for algebras and on the other hand can

be understood as modal formulae, a new account of the duality of modal logic and equa-

tional logic arises (Section 5). The last section provides a full explanation of the theorem

of (Davis, 1972) saying that any conceivable category of coalgebras can be given by oper-

ations and coequations provided that we allow the arities of the operations to be proper

classes.
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1. Preliminaries

We work in Gödel-Bernays set theory with the axiom of choice for classes. It means that

all proper classes are isomorphic, in particular to the class Ord of all ordinals. Categories

are assumed to be locally small, which means that they have a class of objects and sets of
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morphisms between any two given objects. Occasionally we encounter categories which

do not satisfy this requirement and we call them illegitimate.

Given an endofunctor F : X → X , an F -coalgebra A = (A,α) consists of an object

A ∈ X and an arrow α : A → FA. F -coalgebras form a category FCoalg(F ) where a

F -morphism f : (A,α) → (B, β) is an arrow f : A → B ∈ X such that Ff ◦ α = β ◦ f .

The forgetful functor U : FCoalg(F ) → X maps a coalgebra (A,α) to A and a morphism

f : (A,α) → (B, β) to the arrow f : A→ B in X . U creates and hence preserves colimits.

A comonad (M, ε, δ) is given by a functorM : X → X and two natural transformations

ε : M → Id , δ : M → MM satisfying MεX ◦ δX = εMX ◦ δX = idMX and MδX ◦

δX = δMX ◦ δX . The category CCoalg(M) of coalgebras for the comonad M is the full

subcategory of FCoalg(M) whose coalgebras ξ : X → MX satisfy Mξ ◦ ξ = δX ◦ ξ and

εX ◦ ξ = idX .

Set denotes the category of sets and functions and P : Set → Set the covariant powerset

functor. We also use the convention 2 = {0, 1} and call the elements of 2 truth values.

Given A,X ∈ X , the set of arrows A → X is denoted by XA or sometimes X (A,X).

For f : X → Y , the function fA : XA → Y A is defined as fA(g : A → X) = f ◦ g.

For f : A → B, the function Xf : XB → XA is defined as Xf(g : B → X) = g ◦ f .

For instance, with X = Set, 2A is the set of subsets of A and 2f : 2B → 2A is the

inverse-image-map of f : A → B. The assignment − 7→ X− gives rise to a functor

X− : X op → Set. We write XU for the functor Aop → Set obtained from composing

U : A → X and X− : X op → Set.

A concrete category (A, U) (over X ) is a faithful functor U : A → X . A functor

F : A → A′ is a concrete functor between the concrete categories U : A → X and U :

A′ → X if U ′F = U . Concrete categories are concretely isomorphic if the isomorphisms

are concrete functors.

2. Coalgebras for a Signature

Recall from the introduction that algebras over a category X are given by a carrier

A ∈ X and operations AX → AY where AX = X (X,A) denotes the set of arrows

A→ X . Since universal coalgebra over X is universal algebra over X op and X op(X,A) =

X (A,X), coalgebras over a category X can be introduced as carriers A ∈ X equipped

with operations

f : XA → Y A.

Definition 2.1 (Coalgebras for a signature). A signature Σ over a category X is a

class of operation symbols σ each equipped with a pair (X,Y ) of objects of X . We call σ

a (X,Y )-ary operation symbol. A Σ-coalgebra A is an object A ∈ X together with maps

σA : XA → Y A
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for each (X,Y )-ary operation symbol σ ∈ Σ. A morphism of Σ-coalgebras is defined as

an arrow h : A→ B such that the following square commutes

XA σA ✲ Y A

XB

Xh

✻

σB ✲ Y B

Y h

✻

for all σ in Σ. The resulting (illegitimate) category of coalgebras is denoted by SCoalg(Σ).

Example 2.2.

1 If X = Set and Σ consists of a single (1, 2)-operation symbol, then SCoalg(Σ) has

as objects pairs (A,A′ ⊆ A) and morphisms h : (A,A′) → (B,B′) are functions

h : A→ B such that h−1(B′) = A′.

2 Let X = Set and consider the signature Σ consisting of a single (2, 2)-ary operation

symbol ✷. Σ-coalgebras are predicate transformers ✷A : 2A → 2A. f : A → B

is a coalgebra morphism iff a ∈ ✷A(f
−1(V )) ⇔ f(a) ∈ ✷B(V ). We can think

of Σ-coalgebras as transition systems via the concrete isomorphism SCoalg(Σ) ∼=
FCoalg(2(2

−)) which associates to each ✷A : 2A → 2A the hypersystem (cf. (Rutten,

2000)) ⊡ : A→ 22
A

given by U ∈ ⊡A(a) ⇔ a ∈ ✷A(U). The condition on f to be a

morphism can then be written more suggestively as a −→A f
−1(V ) ⇔ f(a) −→B V .

3 Let X be a category of topological spaces containing the topological space 2 =

(2, {∅, {1}, {0, 1}}). The elements of X (A,2) are the open sets of A and a (2,2)-

ary operation ✷ is a topological predicate transformer, cf. (Smyth, 1983). Similarly, if

2 is the two-element discrete space, then the elements of X (A, 2) are the clopen (i.e.,

closed and open) subsets of A.

4 If X = Setop then SCoalg(Σ) is dually isomorphic to the category of algebras over Set

for the signature Σ.

Proposition 2.3. Let Σ be a signature over Set consisting of a set of operation sym-

bols. Then there exist a functor F : Set → Set such that the categories SCoalg(Σ) and

FCoalg(F ) are concretely isomorphic.

Proof. Let σ be a (X,Y )-ary operation symbol from Σ and A a Σ coalgebra. Then the

mapping

σA : XA → Y A

determines the mapping

σ̂A : A→ Y XA

.

Let F be the product of functors Y X−

over all σ ∈ Σ. Then A determines a F -coalgebra

(A,α) where α : A→ FA is induced by σ̂A, σ ∈ Σ. Any F -coalgebra is given in this way.

Let h : A→ B be a morphism of Σ-coalgebras. Since Y h ◦σB determines the composition

A
h✲ B

σ̂B✲ Y XB
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and σA ◦Xh determines

A
σ̂A✲ Y XA Y Xh

✲ Y XB

.

h is a morphism of F -coalgebras. Again, any F -coalgebra morphism is given in this way.

Hence SCoalg(Σ) ∼= FCoalg(F ).

As usual, a signature Σ gives rise to terms. Terms are also equipped with arities and

defined as follows:

1 every (X,Y )-ary operation symbol is an (X,Y )-ary term,

2 every mapping f : X → Y determines an (X,Y )-ary term xf ,

3 having an (X,Y )-ary term t1 and an (Y, Z)-ary term t2, we get an (X,Z)-ary term

t2 · t1.

For each (X,Y )-ary term t and a Σ-coalgebra A we get the mapping

tA : XA → Y A

as follows:

2 (xf )A(v) = f ◦ v for v : A→ X ,

3 (t2 · t1)A = (t2)A ◦ (t1)A.

An equation is a pair (t1, t2) of (X,Y )-ary terms. We write t1 = t2. A Σ-coalgebra A

satisfies this equation iff (t1)A = (t2)A. To emphasise that these equations are evaluated in

coalgebras, we call them coequations. A coequational theory E is a class of coequa-

tions. The category of all Σ-coalgebras satisfying all coequations from E is denoted by

ECoalg(E). It may be an illegitimate category. We are interested in legitimate categories

ECoalg(E). Each such category is equipped with a forgetful functor U : ECoalg(E) → X

and thus it is a concrete category.

Definition 2.4 (Coequational category). A concrete category will be called coequa-

tional if it is concretely isomorphic to ECoalg(E) for some coequational theory E.

In case that X has products, we can reduce the number of operations and equations

needed for a coequational presentation if we add the possibility of forming new terms by

pairing:

4 If I is a set and ti are (X,Yi)-ary terms, i ∈ I, then

〈ti〉

is an (X,
∏

I Yi)-ary term which is interpreted by a Σ-coalgebra A as

〈ti〉A = XA 〈(ti)A〉✲
∏

I

(Y A
i ) ∼= (

∏

I

Yi)
A

This will be convenient in the following examples. Note that we can avoid pairing by

adding instead new operation symbols 〈ti〉 to the signature and also, for all j ∈ I, new

equations xpj
· 〈ti〉 = tj where pj :

∏

I Yi → Yj is the j-th projection.
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Example 2.5.

1 Let X = Set and consider the signature Σ consisting of a single (2, 2)-ary operation

symbol ✷. Using clause (2) we have (2× 2, 2)-ary terms p1, p2, ∧, → induced by the

maps 2 × 2 → 2 known as first and second projection, conjunction and implication;

similarly, for each set I, a (
∏

I 2, 2)-ary term
∧

I ; denote
∧

∅ by true. Using clause (4)

we obtain terms (p1 → p2) → (✷p1 → ✷p2), ✷(p1 ∧ p2) ↔ (✷p1 ∧ ✷p2),
∧

I ✷pi ↔

✷
∧

I pi. In the following examples equations t = true are abbreviated as t.

(a) ECoalg({(p1 → p2) → (✷p1 → ✷p2)}) is concretely isomorphic to the full sub-

category of those (22
−

)-coalgebras g : A → 22
A

for which g(a) is closed under

supersets for all a ∈ A. These coalgebras are known in modal logic as monotone

neighbourhood frames.

(b)ECoalg({✷true,✷(p1 ∧ p2) ↔ (✷p1 ∧ ✷p2)}) is concretely isomorphic to the full

subcategory of those (22
−

)-coalgebras g : A→ 22
A

for which g(a) is closed under

supersets and finite intersections for all a ∈ A. These coalgebras are also known

as coalgebras for the filter functor (Gumm, 2001b) or as normal neighbourhood

frames.

(c) The equations E = {✷true,✷(p1 ∧ p2) ↔ (✷p1 ∧ ✷p2),✷p1 → p1,✷p1 → ✷✷p1}

are the usual axioms of an interior operator. ECoalg(E) is concretely isomorphic to

the category of topological spaces with open and continuous maps as morphisms.

(d)ECoalg({
∧

I ✷pi ↔ ✷
∧

I pi | I a set }) is concretely isomorphic to the category of

Kripke frames, i.e. FCoalg(P).

2 If X is the category of Stone spaces (Johnstone, 1982), 2 the (discrete) two-

element Stone space, and Σ consists of a single (2, 2)-ary operation symbol ✷, then

ECoalg({✷true,✷(p1∧p2) ↔ (✷p1∧✷p2)}) is isomorphic to the category of descriptive

general frames (Goldblatt, 1976).

We show that FCoalg(F ) is always coequational. This result is due to Reiterman. His

paper (Reiterman, 1983), p. 62, formulates it, without proof, over Setop only (i.e. for

algebras over Set) and thus we present Reiterman’s proof sent to the second author in

the late 70s.

Proposition 2.6 (Reiterman). Let F : X → X be a functor. Then FCoalg(F ) is

coequational.

Proof. Let Σ be a signature consisting of (X,FX)-ary operation symbols σX for every

set X and let E consist of coequations

σY · xf = xFf · σX (1)

for every mapping f : X → Y . There is a concrete functor G : FCoalg(F ) → ECoalg(E)

given as follows: For A = (A,α), G(A) is the E-coalgebra (A, σX
GA

) where

σX
GA

(v) = Fv ◦ α

for v : A→ X . On the other hand there is a concrete functor H : ECoalg(E) → FCoalg(F )

sending an E-coalgebra A = (A, σX
A
) to the F -coalgebra (A, σA

A
(idA)).
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We have HG = Id because, for each F -coalgebra A = (A,α) we have σA
GA

(idA) =

F idA ◦ α = α. Conversely, GH = Id because, for each E-coalgebra A = (A, σX
A
), we

have GHA = G(A, σA
A
(idA)) = (A,F (−) ◦ σA

A
(idA)) which equals (A, σX

A
) because for all

v : A→ X

AA σA
A✲ (FA)A

XA

(xv)A

❄
σX
A✲ (FA)A

(xFv)A

❄

commutes (due to the coequation σX · xv = xFv · σ
A) and thus Fv ◦ σA

A
(idA) = σX

A
(v ◦

idA) = σX
A
(v).

The just described procedure needs a proper class of operation symbols. In case of

X = Set, this can be avoided for functors preserving cofiltered limits if we exclude the

existence of arbitrarily large measurable cardinals (which is consistent with ZFC). Recall

that a measurable cardinal κ is a cardinal on which a non-principal κ-complete ultrafilter

exists. An ultrafilter is κ-complete if it is closed under intersections of cardinality < κ

and it is non-principal if it does not contain a singleton-set. Let (M) denote the following

set-theoretic statement, (see (Adámek and Rosický, 1994) for more information).

(M) There do not exist arbitrarily large measurable cardinals.

Proposition 2.7. Assume (M) and let F : Set → Set be a functor preserving cofiltered

limits. Then FCoalg(F ) is coequational in a signature consisting of a single operation

symbol.

Proof. Let P be an infinite set whose cardinality is greater than any measurable car-

dinal. Then the full subcategory P of Set having a single object P is codense in Set (see

(Adámek and Rosický, 1994) A.5). Let Σ consist of a single (P, FP )-ary operation sym-

bol σ and E consist of coequations (1) for f : P → P (where σ = σP ). Analogously to

Proposition 2.6 , we get a functor G : FCoalg(F ) → ECoalg(E) and our task is to define

H : ECoalg(E) → FCoalg(F ). Let (A, σA) ∈ ECoalg(E). Since P is infinite, the comma-

category (A↓P) is cofiltered (〈u, v〉 serves as a lower bound for u, v : A→ P ). The coden-

sity of P means that f : A → P forms a limit cone to the projection Q : (A↓P) → Set.

Since F preserves cofiltered limits, Ff : FA → FP forms a limit cone to FQ. Coequa-

tions in E say that σA(f) : A → FP is a cone to FQ. Thus there is a unique mapping

α : A → FA such that Ff ◦ α = σA(f) for each f : A → P . We put HA = (A,α). The

rest is analogous to Proposition 2.6.

Remark 2.8.

1 We can assume that there are no measurable cardinals. If V is a model of ZFC in

which measurable cardinals exist, let κ be the smallest such. Then Vκ, the restriction

of V to sets of rank < κ, is a model of ZFC that contains no measurable cardinals.
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2 If there are no measurable cardinals, we can take a countable set for P .

3 Since cofiltered limits are connected, Proposition 2.7 applies to polynomial functors

F : Set → Set.

We have seen that categories of coalgebras for a functor are coequational. But often,

one is more interested in covarieties of these categories. Following (Manes, 1976), a full

subcategory C of a coequational category (A, U) is called a covariety if C is closed under

(existing) colimits, quotients and U -split subobjects. The last concept means a subobject

m : A → B such that Um is a split monomorphism. Over Set covarieties correspond to

the usual notion of full subcategories closed under coproducts, quotients and subobjects.

Most of the covarieties of coequational categories have cofree coalgebras. The forgetful

functor is comonadic in these cases and therefore, following (Linton, 1969), coequational.

We show that this easily follows from Reiterman’s proposition. Following (Mac Lane,

1971), we say that a concrete category (C, U) is comonadic if U has a right adjoint R

and the canonical functor from C to the category of all coalgebras for the comonad UR

is an isomorphism.

Proposition 2.9 (Linton). Every comonadic category is coequational.

Proof. Let F : X → X be a comonad with counit ε : F → Id and comultiplication

δ : F → FF . Then coalgebras for the comonad F are specified in FCoalg(F ) by

xεX · σX = xidX
,

σFX · σX = xδX · σX .

Moreover, comonadic categories coincide with coequational categories having cofree

coalgebras. Let U : A → X be a functor. A U-split equaliser is an equaliser in A

A
e✲ B

f✲

g
✲ C

such that its U -image splits, i.e., it is equipped with t : UC → UB and s : UB → UA

such that s ◦Ue = idUA, t ◦Uf = idUB, and t ◦Ug = Ue ◦ s. U creates U -split equalisers

if it creates equalisers of pairs f, g for which Uf, Ug has a split equaliser in X . Beck’s

theorem (Mac Lane, 1971) says that U is comonadic iff it has a right-adjoint and creates

U -split equalisers. We will say that a concrete categoryA is co-Beck if U creates colimits

and U -split equalisers.

Proposition 2.10. Each covariety of a coequational category is co-Beck.

Proof. Straightforward, cf. (Rosický, 1981).

Corollary 2.11 (Linton). Every coequational category with cofree coalgebras is

comonadic.

Proof. Follows from Proposition 2.10 and Beck’s theorem.
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We have seen that every covariety (of a coequational category) with cofree coalgebras

is coequational. Without this assumption this is an open problem.

Problem 2.12. Is every covariety in FCoalg(F ), where F : Set → Set, coequational?

More generally, is every covariety of a coequational category coequational?

Although important, the problem is not crucial for our approach. We will see in Section 4

that every covariety (of a coequational category over Set) can be defined by coequations

in implicit operations.

3. Behavioural Equivalence

In case of algebras over Set, we think of operations as functions allowing to construct

new elements of the carrier. We show that in case of coalgebras over Set, operations can

be thought of as predicate transformers that respect behavioural equivalence. They will

appear as modal operators in Section 5.

We first introduce a novel notion of behavioural equivalence. It formalises the idea

that behavioural equivalence is the smallest equivalence relation that is invariant under

morphisms. We define two notions, the second one taking ‘colourings’ into account: Given

a functor U : A → Set and a set of ‘colours’ X , a colouring v for an object A ∈ A is a

map UA → X .

Definition 3.1 (Behavioural Equivalence). Consider a functor U : A → Set.

1 ∼ is the smallest equivalence relation on the class of all pairs (A, a), A ∈ A, a ∈ UA,

satisfying

(A1, a1) ∼ (A2, Uf(a1)) for all f : A1 → A2.

2 Given X ∈ Set, ∼X is the smallest equivalence relation on the class of all triples

(A, v, a), A ∈ A, v : UA → X , a ∈ UA, satisfying

(A1, v2 ◦ Uf, a1) ∼X (A2, v2, Uf(a1)) for all v2 : UA2 → X , f : A1 → A2.

If (A, a) ∼ (B, b) we say that a and b are behaviourally equivalent. If (A, v, a) ∼X (B, w, b)

we say that a and b are X-behaviourally equivalent.

Categorically speaking, the equivalence classes of behavioural equivalence are the com-

ponents of the category of elements of the forgetful functor; the equivalence classes of

X-behavioural equivalence are the components of the category of elements of the functor

(U↓X) → Set, (A, UA → X) 7→ UA.

Example 3.2. If A = FCoalg(F ), F : Set → Set then (A, a) ∼ (B, b) iff a and b are

identified by the morphisms into the final coalgebra. As it is well-known, this means

that if F preserves weak pullbacks then (A, a) ∼ (B, b) iff a and b are related by a

bisimulation in the sense of (Aczel and Mendler, 1989). In particular, in case of FCoalg(P)

or FCoalg(P(− × L)), behavioural equivalence yields the familiar notion of bisimilarity

for (labelled) transition systems.
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The following gives an alternative characterisation of behavioural equivalence (the

requirement on pushouts is satisfied by coequational categories).

Proposition 3.3. Suppose that A has pushouts and that U : A → Set preserves them.

(A1, v1, a1) ∼X (A2, v2, a2) iff there are B, w and morphisms fi : Ai → B such that

X

UA1
Uf1
✲

v1
✲

UB

w
✻

✛
Uf2

UA2

v2

✛

(2)

commutes and (Uf1)(a1) = (Uf2)(a2).

Proof. Let ≈ denote the relation defined by condition (2). ≈ ⊆ ∼ is immediate. For the

converse, note that ≈ contains the generating pairs of ∼ and is reflexive and symmetric.

≈ is transitive, since A has pushouts and U preserves them.

An (X,Y )-valued predicate transformer PA maps X-valued predicates to Y -valued

predicates, that is, PA : XUA → Y UA. It is called behavioural if it respects behavioural

equivalence.

Definition 3.4 (Behavioural Predicate Transformers). Consider a functor U :

A → Set. An (X,Y )-valued predicate transformer P is an operation which determines

for each A ∈ A, v : UA → X , a ∈ UA a value

PA(v, a) ∈ Y. (3)

P is called a behavioural predicate transformer iff

(A, v, a) ∼X (B, w, b) ⇒ PA(v, a) = PB(w, b) (4)

for all w : UB → X and a ∈ UA. In case that X = 1 and Y = 2 we call P a behavioural

predicate.

Note that behavioural predicates are precisely those predicates which are invariant

under behavioural equivalence. The following is immediate from the respective definitions.

Lemma 3.5. An operation P which determines for each A ∈ A, v : UA → X , a ∈ UA a

value PA(v, a) ∈ Y is a behavioural predicate transformer iff

PA(w ◦ Uf, a) = PB(w,Uf(a)). (5)

for all morphisms f : A → B, all w : UB → X , and all elements a of A.

We now show that invariance of a predicate transformer XU → Y U under X-

behavioural equivalence is equivalent to the naturality of XU → Y U .

Theorem 3.6. Consider a functor U : A → Set. An operation P which determines for

each A ∈ A, v : UA → X , a ∈ UA a truth value PA(v, a) ∈ Y is a behavioural predicate

transformer iff

PA : XUA −→ Y UA
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is a natural transformation.

Proof. Naturality of P means that for any morphism f : A → B

XUA
PA ✲ 2UA

XUB

XUf

✻

PB ✲ 2UB

2Uf

✻

commutes. Given w : UB → X and spelling out the definition of the vertical arrows we

obtain PA(w ◦ Uf) = PB(w) ◦ Uf , i.e., PA(w ◦ Uf, a) = PB(w,Uf(a)) for all a ∈ UA,

yielding condition (5) in Lemma 3.5.

The theorem is important to us for the following reasons. First, it gives an abstract

characterisation of invariance under behavioural equivalence as a naturality condition.

For example, for any functor F : Set → Set, the behavioural predicates of FCoalg(F ) are

precisely the natural transformations U → 2 where U : FCoalg(F ) → Set is the forgetful

functor. Similarly, modal operators can be characterised as natural transformations as

explained in detail in Section 5.

Second, since every (X,Y )-ary operation of a signature for coalgebras gives rise to a

natural transformation XU → Y U , it shows that, in case of coalgebras over Set, coalge-

braic operations are predicate transformers that respect behavioural equivalence.

The next section is devoted to a detailed study of natural transformations XU → Y U .

4. Implicit Operations

In universal algebra, an implicit operation is a natural transformation AX → A. If free

algebras exist, each implicit operation is explicit (i.e. given by a term). If free algebras

do not exist, implicit operations are more powerful. For example, in case of algebras

over finite sets, (Reiterman, 1982) showed that every variety is definable by equations in

implicit operations (but not by equations in explicit operations). This section shows how

to define covarieties of coequational categories using implicit operations.

If Σ is a signature and U : SCoalg(Σ) → X the forgetful functor then each (X,Y )-ary

operation symbol σ ∈ Σ determines a natural transformation

σ : XU → Y U

So does each (X,Y )-ary term. It leads us to define (X,Y )-ary implicit operations, for

every functor U : A → X as natural transformations

XU → Y U .

Definition 4.1 (Coequations in Implicit Operations). Let U : A → X be a faithful

functor and X,Y ∈ X . Having two (X,Y )-ary implicit operations σ1 and σ2 in A, we

say that an object A ∈ A satisfies the coequation σ1 = σ2 and write A |= σ1 = σ2 iff

(σ1)A = (σ2)A.
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Remark 4.2.

1 If the functor U has a right adjoint R then (X,Y )-ary implicit operations correspond

to natural transformations

A(−, RX) → A(−, RY ),

i.e., to morphisms RX → RY . Consider implicit operations σ1, σ2 represented by

s1, s2 : RX → RY , respectively. Then an object A satisfies the coequation σ1 = σ2
iff every morphism h : A → RX is equalised by s1 and s2, i.e., iff h factors through

an equaliser

S ✲ RX
s1✲

s2
✲ RY

(provided that the latter exists). This notion of a coequation as a subobject S of a

cofree object RX is a special case of (Manes, 1976), Theorem 3.4, page 227. It was

further investigated in (Rutten, 2000; Gumm, 2001a; Roşu, 2001; Kurz, 2000; Hughes,

2001). Conversely, for any subobject S → RX , take the cokernel pair f, g : RX → A

and compose it with ηA : A → RUA given by the unit η of the adjunction U ⊣ R.

Then the pair ηA ◦ f, ηA ◦ g produces the pair of natural transformations XU → Y U

in our sense. Thus, in the presence of cofree coalgebras, our approach is equivalent to

the coequations-as-subobjects-of-cofree-objects approach.

2 Without cofree coalgebras, there are related concepts of a coequation in (Adámek and

Porst, 2001) and (Reiterman, 1983). They are subsumed by coequations in implicit

operations.

The following fact is a consequence of (Rosický, 1981, 5.3). Covarieties are defined on

page 8.

Proposition 4.3. Suppose that U : A → X is coequational. Then, for a collection E

of coequations in implicit operations, the full subcategory of all objects satisfying each

coequation from E is a covariety in A.

Proof. The closedness under colimits is clear. If m : B → A is a U -split subobject of

A, then XUm : XUA → XUB is epi which yields closedness under U -split subobjects.

We now show that over Set the converse holds. This is a co-Birkhoff theorem not relying

on the existence of cofree coalgebras. The proof uses certain implicit operations defined

in terms of the behavioural equivalence relations ∼X introduced in Definition 3.1.

Theorem 4.4. Let E be a coequational theory over Set. Then every covariety C in

ECoalg(E) is definable by coequations in implicit operations.

Proof. For a set X and a E-coalgebra A, define

ϕX
A : XUA → 2UA

as follows: for v : UA → X and a ∈ UA, let ϕX
A
(v)(a) = 1 iff there are C ∈ C, u : UC → X ,

c ∈ UC, such that (A, v, a) ∼X (C, u, c), see Definition 3.1. ϕX is an implicit operation

by Theorem 3.6.
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Consider coequations

ϕX = true (6)

where true is the implicit operation trueA : XUA → 2UA induced by the constant function

X → 2, x 7→ 1. Each C ∈ C satisfies (6). Conversely, assume that A satisfies all coequations

(6). Then, due to Proposition 3.3, for each a ∈ UA, there are Ba ∈ ECoalg(E), Ca ∈ C,

and homomorphisms fa, ga and mappings wa, ua such that

UA

UA
Ufa
✲

idUA
✲

UBa

wa

✻

✛
Uga

UCa

ua

✛

commutes and (Ufa)(a) ∈ (Uga)(UCa). Using a multiple pushout of the fa

B UA

we get

A
fa
✲

f ✲

Ba

f ′
a

✻

UA
Uf
✲

idUA
✲

UB

w
✻

✛
U(f ′

a ◦ ga)
UCa

ua
✛

with (Uf)(UA) ⊆
⋃

{U(f ′
a◦ga)(UCa) : a ∈ UA}. Note that

⋃

{U(f ′
a◦ga)(UCa) : a ∈ UA}

is the carrier of an E-coalgebra which is in C due to closure under coproducts and

quotients. Since f is injective and C is closed under subobjects, it follows A ∈ C.

Remark 4.5.

1 If ECoalg(E) has cofree coalgebras, the implicit operation ϕX is induced by a mor-

phism h : RX → R2, U ⊣ R, or, equivalently, by a mapping h̃ : URX → 2. Then, for

v : UA → X ,

ϕX
A (v) = h̃ ◦ Uv♯

with v♯ : A → RX being the transpose of v.

2 Our proof works in the universe of finite sets, i.e., every covariety of finite coalgebras

is given by coequations in implicit operations. This is the “Reiterman Theorem”

(Reiterman, 1982) for coalgebras.

3 Note that it does not follow from the theorem that C is coequational. Hence the

theorem does not solve Problem 2.12. The reason is that the interpretations of implicit

operations do not need to be coequationally determined by equations from E.

5. Modal Logic

We associate to each category A equipped with a functor U : A → Set a modal logic,

called the internal modal language of A, and show that modal formulae and coequations

have the same expressive power. Since coequations for coalgebras dualise equations for

algebras this leads to a new formalisation of the statement that modal logic for coalgebras

is dual to equational logic for algebras.

To start with, let us take a brief look at the classical modal logic of Kripke frames,

see e.g. (Blackburn et al., 2001) for details. We denote by KF the category of Kripke
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frames and bounded morphisms (a bounded morphism is a function whose graph is a

bisimulation), that is, KF = FCoalg(P). Writing U : KF → Set for the forgetful functor

mapping Kripke frames to their carriers, the semantics [[ϕ]] of a modal formula ϕ in

propositional variables {pi | i ∈ I} can be understood as a KF-indexed class of operations

[[ϕ]]A : (
∏

I

2)UA → 2UA, A ∈ KF,

that is, each [[ϕ]]A maps valuations v ∈ (
∏

I 2)
UA and elements a ∈ UA to truth values

[[ϕ]]A(v, a) ∈ 2 = {0, 1}. A central feature of modal logic is that formulae are invariant

under bisimulation. That is, for a modal formula ϕ and two Kripke models (A, v), (B, w),

and a ∈ A, b ∈ B it holds

a, b bisimilar ⇒ [[ϕ]]A(v, a) = [[ϕ]]B(w, b) (7)

But we have seen in Theorem 3.6 that (7) is equivalent to [[ϕ]]A being natural in A. If

we take invariance under bisimulation as the essence of modal logic it makes therefore

sense to consider any natural transformation (
∏

I 2)
U → 2U as a modal operator and

any category A equipped with a functor U : A → Set as a semantic domain for modal

logic. This leads us to the following definition.

Definition 5.1. The internal modal language of a functor U : A → Set is given follows.

For each set I and each i ∈ I the propositional variables pIi are I-ary formulae. For each

natural transformation µ : (
∏

I 2)
U −→ 2U there is an I-ary modal operator ✷µ. If ϕi

are J-ary formulae, then ✷µ〈ϕi〉 is a J-ary formula. The semantics of formulae is given

by

[[✷µ〈ϕi〉]] = (
∏

J

2)U
〈[[ϕi]]〉✲

∏

I

(2U ) ∼= (
∏

I

2)U
µ✲ 2U .

Given an I-ary formula ϕ and v : UA →
∏

I 2, we write A, v, a |= ϕ iff [[ϕ]]A(v, a) = 2 and

A |= ϕ iff [[ϕ]]A(v) = UA for all v : UA →
∏

I 2. For 0-ary formulae we drop v from the

notation.

Remark 5.2.

1 Behavioural equivalence is characterised by formulae of the language, that is, for each

A ∈ A and a ∈ UA there is a (0-ary) formula ϕa such that B, b |= ϕa ⇔ a ∼ b.

2 The restriction of sets of colours to products of 2 allows for a notion of substitution

of formulae for propositional variables. As usual in categorical logic, the semantics of

substitution is given by composition.

3 The basic calculus for this modal logic is given by the axioms of infinitary proposi-

tional logic plus the rule ‘from ϕ ↔ ψ derive ✷ϕ↔ ✷ψ’ for each modal operator ✷.

If, for example, ✷ is a normal modal operator, that is the axioms ✷true = true and

✷(p1 ∧ p2) ↔ ✷p1 ∧ ✷p2 are added, then we obtain a calculus that is equivalent to

the basic modal logic K.

4 The definition of the internal modal language makes sense not only over the category

Set. For example, if we replace Set by the category of Stone spaces and let 2 be
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the discrete two-element space, then the continuity of the valuations v : UA →
∏

I 2

expresses that the extensions of the propositions pi have to be admissible (i.e., clopen).

Example 5.3. The following examples illustrate our notion of modal operator as a

natural transformation (
∏

I 2)
U → 2U .

1 An I-ary boolean operator is a modal operator fU : (
∏

I 2)
U −→ 2U given by functions

f :
∏

I 2 → 2 as e.g. true, →,
∧

I , compare Example 2.5.

2 Atomic propositions are 0-ary modal operators and are given by natural transforma-

tions 1 → 2U (or also U → 2).

3 All commonly considered modal operators are examples. This includes non-normal

modal operators, polymodal operators, modal operators given by natural rela-

tions (Pattinson, 2001) or predicate liftings (Pattinson, ), and recursively defined

modalities as in dynamic logic or the µ-calculus.

4 Examples of modalities which are not covered by Definition 5.1 can be obtained by

definitions that require a ‘change of structure’. For instance, consider A = (A,α) ∈

FCoalg(P) and define

A, v, a |= ✷(ϕ, ψ) =







Aϕ, vϕ, a |= ψ if A, v, a |= ϕ

true otherwise

where Aϕ = (Aϕ, αϕ) is given by Aϕ = A \ {a : A, v, a /|= ϕ} and αϕ, vϕ are the

restriction of α, v to Aϕ. Modalities of this kind, often denoted by [!ϕ]ψ, arise in

epistemic logic, see (Baltag et al., 1999).

We can now translate results about implicit operations into results about modal logic.

For example, the following statement is a corollary of Theorem 4.4 and Remark 4.5.2.

For its proof we just have to determine the modal language which is expressive enough

to describe the formulas ϕX appearing in the proof of Theorem 4.4.

Proposition 5.4 (A Reiterman Theorem for Modal Logic). If a class K of finite

Kripke frames is closed under finite coproducts, quotients and embeddings, then K is

definable by a set {ϕX | X = 2n, n ∈ N} of formulae ϕX , each of which is a (countable)

disjunction

ϕX =
∨

B∈K,w:B→X,b∈B

ψ(B,w,b)

of finitary formulae ψ(B,w,b).

Finally, let us make precise the relationship between coequations in implicit operations

and modal logic.

Proposition 5.5. Let U : A → Set be a functor. Coequations in implicit operations and

formulae of the internal modal language have the same expressive power.

Proof. Each modal formula ϕ is logically equivalent to the coequation ϕ = true, which

is to say that A |= ϕ (Definition 5.1) iff A |= ϕ = true (Definition 4.1) for all A ∈ A.

Conversely, for a coequation t = s with t, s : XU → Y U , we find a set I and a surjective
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function e :
∏

I 2 → X and a modal formula t ◦ e ↔ s ◦ e : (
∏

I 2)
U → 2U such that

A |= t = s ⇔ A |= t ◦ e↔ s ◦ e for all A ∈ A.

Remark 5.6 (Duality of Modal and Equational Logic). Consider U : A → Set. A

(coalgebraic) implicit operation for U is the same as an (algebraic) implicit operation for

Uop. Aop ∈ A satisfies the (algebraic) equation σ1 = σ2 iff A satisfies the modal formula

σ1 ↔ σ2. A satisfies the modal formula ϕ iff Aop satisfies the equation ϕ = true.

6. Davis’s Theorem

We may allow signatures with (X,Y )-ary operation symbols where X and Y are

classes. We call them meta-signatures. In the same way as signatures yield coequa-

tional categories, meta-signatures lead to meta-coequational categories. Every meta-

coequational category is co-Beck (page 8). (Davis, 1972) proved the converse. He over-

stated his result by claiming that every co-Beck category is coequational, which is not

true as Example 6.3 shows. The second author observed Davis’s mistake in (Rosický,

1981); here we give a full explanation. First, we sketch an argument proving Davis’s

theorem.

Theorem 6.1 (Davis). A concrete category is meta-coequational iff it is co-Beck.

Proof. Let U : C → Set create colimits and U -split equalisers. Let R : Class → Class

be the density comonad of

Ū : C
U
−→ Set →֒ Class.

It means that RX is the colimit of the canonical diagram (Ū↓X) → Class

ŪA
v ✲ X

RX

εX

✲

cv ✲

where εX is induced by the cone given by v’s. Since Ū creates colimits, (Ū↓X) is∞-filtered

(= every small subcategory of (Ū↓X) has an upper bound). Since the (illegitimate)

category CCoalg(R) of coalgebras for the comonad R is coequational over Class, it suffices

to prove that the image of the comparison functor

C ✲ CCoalg(R)

Class

V✛Ū ✲
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consists precisely of the R-coalgebras (X, ξ) with X a set. Any such coalgebra is given

by a V -split equaliser

UBi
✛✛ UAi

✛ UCi

RRX
❄

✛Rξ✛
δX

RX
❄

✛ ξ
X

ci

❄

where δ is the comultiplication. Since RRX and RX are given by ∞-filtered colimits, this

equaliser is an∞-filtered colimit of U -split equalisers in C (we are also using that U creates

U -split equalisers). Since X is a set, some R-coalgebra homomorphism ci : Ci → (X, ξ)

splits, i.e., ci ◦ s = idX for some s : (X, ξ) → Ci. Hence (X, ξ) is isomorphic to some

C-object.

Remark 6.2. Let C be a concrete category and σ : XU → Y U an implicit operation

where X,Y are classes. Take mappings f : X1 → X and g : Y → Y1 where X1, Y1
are sets. We get an implicit operation gU ◦ σ ◦ fU where arities are sets. If sets are

codense in classes then Y is a canonical limit of the canonical diagram (Y ↓Set) → Class

consisting of g : Y → Y1 where Y1 is a set. Hence, the implicit operation σ ◦ fU is

determined by implicit operations gU ◦σ◦fU . Moreover, since UC are sets, σ is determined

by implicit operations gU ◦ σ ◦ fU . This is what Davis claimed. However, it does not

mean that coequations of implicit operations whose arities are classes can be replaced

by coequations of implicit operations whose arities are sets. There is a problem with

compositions XU σ1−→ ZU σ2−→ Y U where Z is a proper class. The precise result is

Proposition 5.5 in (Rosický, 1981).

As before (see the proof of Proposition 2.7), sets are codense in classes iff Ord is not

measurable, i.e., iff each Ord-complete ultrafilter is principal. A model of such a set

theory is Vα where α is inaccessible but not measurable. On the other hand, in the

theory of finite sets, i.e., in Vω, is Ord = ω measurable.

Example 6.3. Let Σ consist of a single (1,Ord)-ary operation symbol σ. Then Σ-

coalgebras A are sets A equipped with an operation σA : 1A → OrdA, i.e., with a

mapping α : A → Ord . Homomorphisms h : (A,α) → (B, β) are mappings h : A → B

such that β ◦h = α. SCoalg(Σ) is a (legitimate) meta-coequational category. It cannot be

isomorphic to any full subcategory of FCoalg(F ) for any functor F : Set → Set because

it contains a proper class of one-element coalgebras.

Each mapping f : Ord → m gives a (1,m)-ary term (i.e., a (1,m)-ary implicit operation)

xf · σ). In fact, every implicit operation ϕ : 1U → mU is of that kind. It suffices to take

f : Ord → m given as f(p) = ϕP(id1) where P is the one-element Σ-coalgebra with σP
taking the value p (see (Rosický, 1981)7.2 for the easy calculation that ϕ = xf · σ.)

Let Σ1 be the collection of all (1,m)-ary operation symbols σf , f : Ord → m. Σ1 is not

a signature because it is larger than a class. If Ord is not measurable then, following
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(Rosický, 1981)5.5, SCoalg(Σ) is described in Σ1 by coequations xg · σf = σg◦f , for

f : Ord → m and g : m → k. In fact, having a Σ1-coalgebra (A, (σf )A) satisfying

these equations, we get a cone (σf )A : A → m of the canonical diagram (Ord↓Set) and,

therefore, the induced mapping α : A → Ord . (A,α) is the Σ-coalgebra determined by

(A, (σf )A).

If Ord is measurable, then SCoalg(Σ) is not coequational. In fact, it is shown in (Rosický,

1981)7.2 that Ord-complete ultrafilters provide one-element coalgebras living in all co-

equational categories containing SCoalg(Σ).
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