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Abstract

We survey work in category theory and coalgebra on how to extend a functor from maps to relations. This
relation lifting has a universal property, which is presented in some detail and guides us to generalisations
to monotone and many-valued relations. As applications, it is shown how different notions of bisimulation,
simulation and modal logics do arise.
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1. Introduction

The former RelMiCS and now RAMiCS conference series, established in 1994, is witness to the importance
of relational methods in Computer Science. The change of the name to RAMiCS emphasises the close
relationship between relational methods and algebraic methods. But what then about coalgebraic methods?
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This question seems even more appropriate if one remembers that relational methods play an important role
in coalgebra. Apart from the fact that coalgebras themselves generalise relational structures such as Kripke
frames, central coalgebraic notions such as (bi)simulation and Moss’s modal operator ∇ depend on relational
methods. This paper presents an attempt to explain to researchers who work with relational methods, how
and why they are used in coalgebra.

Of course, bisimulation and modal logic predate coalgebras by many decades. We therefore spend some time
in Section 2 to present the specific coalgebraic perspective. While the examples for coalgebras (infinite trees,
automata, Kripke models, Markov chains) are all familiar, the coalgebraic challenge is to develop a theory
that uniformly applies to all of these, and many more, examples. The benefit then is that these coalgebraic
methods can be extended modularly to combinations of the basic examples by arbitrary combinations of
type constructors such as composition, product, coproduct etc.

To achieve this uniformity, coalgebra is developed parametrically in a type-functor T . In this paper, we
employ from category theory a method to lift a relation on X and Y

X ◦ // Y

to a relation on TX and TY
TX ◦ // TY

and Section 2 finishes by giving an elementary description of it.

Next to the uniformity of coalgebra in the type-functor T , another thread through this paper is exploring
some of the generalisations suggested by the category theoretic treatment. Thus, in Section 3, after de-
scribing the universal property of the relation lifting, we show that it generalises, with some technical effort
but conceptually smoothly, to, first, monotone relations and, then, also to many-valued relations (of which
metrics are a typical example).

Section 4 then presents the motivating examples, (bi)simulation and coalgebraic logic. We hope that on a
first reading Section 4 is informative even if jumping over the more technical Section 3.

Finally, we conclude with some directions of future research.

Remark on notation. There exist conflicting traditions in which order to write relational composition.
We apologise for writing it the ‘wrong way around’ (if compared to, eg, [48, 47]). The reason is that a
central role in these notes is played by the functor (−)∗ : Set −→ Rel wich takes a function f to its graph
relation f∗ and we want the equality

(f ◦ g)∗ = f∗ · g∗
where ◦ is composition of functions and · is composition of relations. Since the order of composition of
functions seems to be too well-established, we make composition of relations follow the composition of
functions. One may think that it is unfortunate that the convention of writing the composition of functions
diagrammatically/relationally, employed in famous category theoretical literature such as [38, 13], did not
catch on.

2. Algebras, Coalgebras, Relations, Relation Lifting

We explain algebras and coalgebras for a functor and relation lifting .

1. The algebras for a functor are a (rather mild) generalisation of algebras for a signature known from
universal algebra. Therefore, in this section, we spend some time on the move from signatures to
general (finitary) functors. Algebras for a general functor then encode algebras for a signature that
satisfy certain equations.

Hence the study of algebras for a functor (and their homomorphisms) does not really go beyond the
realm of “classical” universal algebra.
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2. Coalgebras for a functor are formally defined dually to algebras. However, one cannot quite say that
the study of coalgebras (often called universal coalgebra) is the “dual of universal algebra”. The
reason is that coalgebras can be used to encode various types of automata. Hence the questions one
can naturally ask about coalgebras have a distinctive computational meaning .

3. One particular topic that coalgebras allow us to study is behavioural equivalence of automata and
bisimulations. As it turns out, it is possible to develop such a theory parametrically in the ambient
functor that describes the “behaviour” of automata. A crucial part of such theory is the notion of
relation lifting : the possibility to extend a relation between X and Y to a relation between TX and
TY , where T is the functor describing the automata.

2.A. Algebras for a functor

In universal algebra, to specify a class of algebras one starts with a signature Σ : N −→ Set, or, equiv-
alently, with a polynomial functor FΣ(X) =

∐
n∈N Σ(n) • Xn, where Σ(n) • Xn denotes the Σ(n)-fold

coproduct of the set Xn. To regard a signature Σ as a functor FΣ : Set −→ Set allows us to say that an
algebra is simply an arrow

FΣ(X) −→ X

in the category Set and that an algebra homomorphism f : X −→ X ′ is a commuting square

FΣ(X)

FΣ(f)

��

// X

f

��

FΣ(X ′) // X ′

(1)

Example 2.1. Suppose we specify a signature consisting of two binary operations ∗ and + and one nullary
operation e. Thus, the corresponding Σ : N −→ Set is defined by putting Σ(2) = {∗,+}, Σ(0) = {e} and
Σ(n) = ∅ otherwise. The appropriate polynomial endofunctor FΣ : Set −→ Set then collapses to

FΣ(X) = {e} •X0 + {∗,+} •X2

since the signature Σ is empty for n /∈ {0, 2}. A typical element of FΣ(X) therefore can be conceived as
having one of the following three forms

e

0

∗

x′ x

+

x′ x

where we denoted by 0 the unique element of the set X0 and (x′, x) denotes an arbitrary element of X2.

Thus, elements of FΣ(X) are precisely the flat terms in variables X for the signature Σ. A mapping
a : FΣ(X) −→ X that makes X into an algebra for FΣ is then simply the interpretation of flat terms in X.
Thus, the mapping a sends the above three typical elements to their “meanings” in X.

It is now straightforward to verify that the commutative square (1) encodes precisely the fact that the
mapping f : X −→ X ′ respects the operations e, ∗ and +.

In category theory, the notion of algebra for a signature is generalised to the notion of an algebra for
a functor. Looking at (1) above, we see that it makes sense to speak of algebras FX −→ X and their
homomorphisms whenever we have a functor F : C −→ C on an arbitrary category C.

What is gained by this generalisation?
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Answer 1. Maybe not too much, as long as one stays in sets, that is, as long as one takes C = Set. Let
us call a functor Set −→ Set finitary if it is fully determined by its action on finite sets. Without
going into the category theoretic definition of finitary, it suffices to say here that an arbitrary functor
F : Set −→ Set is finitary iff there is a signature Σ such that F is a quotient of some FΣ,

FΣ
// // F .

It follows that for any finitary F : Set −→ Set, an F -algebra FX −→ X is nothing but an algebra

FΣX // // FX // X

for the signature Σ (and the equations defining the quotient FΣ
// //F ). To summarize, the study

of algebras for (finitary) functors Set −→ Set does not lead beyond the study of varieties in universal
algebra. For a detailed account on algebras for a functor see [7].

Answer 2. Quite a lot is gained when moving to other categories C than Set. Ever since the work of Scott
and others on domain theory and program semantics, type constructors T have been viewed as functors
and semantic domains as (particular) algebras TX −→ X, see e.g. [2]. Typically, the category C is a
category of partial orders or metric spaces, possibly with some completeness requirements.

Another interesting choice for C is the category which is dual to Set. One then obtains the notion of
a coalgebra for a functor T : Set −→ Set as a function

X −→ TX.

As opposed to what we have seen in Answer 1 above, the fact that a finitary T is a quotient FΣ
// //T

of a polynomial functor FΣ does not allow us to reduce the notion of a T -coalgebra to the notion of
a coalgebra X −→ FΣX for a signature Σ. Going beyond polynomial functors will lead to new and
interesting examples, as we are going to see next.

2.B. Coalgebras for a functor

Examples of coalgebras below show that coalgebras for polynomial functors FΣ are of interest, but also that
new phenomena such as bisimulation come into focus when going beyond polynomial functors.

Example 2.2. Coalgebras for polynomial functors describe infinite trees. For example, an element x in a
coalgebra ξ : X −→ X + X can be seen as an infinite stream of left/right decisions: in state x, taking a
transition by applying ξ yields a successor state ξ(x) in either the left or the right component of TX = X+X.

Similarly, a state in a coalgebra X −→ A + B × X × X represents a possibly infinite tree with leaves
labelled by elements of A and non-leaf nodes labelled by elements of B. Here, the polynomial functor is
TX = A+B ×X ×X.

Example 2.3. Coalgebras for the powerset functor are transition systems. Here the functor T assigns the
powerset PX to every set X. Thus a coalgebra ξ : X −→ TX can be seen as describing the behaviour of a
nondeterministic transition system: the “next state” ξ(x) of a state x is, in fact, the subset ξ(x) ⊆ X of all
possible states into which x can evolve.

Example 2.4. Coalgebras for the distribution functor are probabilistic transition systems. Denote by DX
the set of all functions p : X −→ [0; 1] that have a finite support (i.e., such that p(x) = 0 for all but finitely
many x ∈ X) and that satisfy

∑
x∈X p(x) = 1. Then a coalgebra ξ : X −→ DX describes a transition

system with ξ(x) : X −→ [0; 1] giving the probability ξ(x)(x′) that x evolves to x′.

In universal coalgebra, a notion coined by Rutten in [45], therefore, it is important to develop the theory
of T -coalgebras parametric in a functor T , much in the same way as universal algebra is done parametrically
in a signature Σ. Some questions that arise are the following.
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• For which functors T : Set −→ Set is there a final coalgebra?

• Can the behavioural equivalence given by the final coalgebra be characterised in terms of bisimulations?

• In universal algebra every signature Σ gives rise to an equational logic. Can we associate a coalgebraic
logic to every functor T : Set −→ Set?

• How much of this can be done axiomatically, replacing Set by general categories C?

Pioneering work on the first three items has been done, respectively, by [3, 45, 40], but the last item is still a
topic of research. Of course, there are many further topics in coalgebra, for example, the use of coalgebra to
solve recursive equations or to describe and derive congruence formats of process algebras or to extend and
apply coalgebraic logic to description logics and knowledge representation. The topic of the present survey
is a particular technique that helps to answer the questions above, namely, the relation lifting .

2.C. Relations, categorically

What are relations from a categorical view point? Let us begin with the obvious, namely that we have a
category Rel of sets and relations. A relation

R : A ◦ // B

determines, and is determined by, its graph GR ⊆ A×B and the domain projection dR : GR −→ A and the
codomain projection cR : GR −→ B. Given relations

A ◦
R // B and B ◦

S // C

there is the composition

A ◦
S·R // C

which is defined by the graph

G(S ·R) = {(a, c) | ∃b ∈ B . (a, b) ∈ R ∧ (b, c) ∈ S}. (2)

As we are following a methodology in which data types form categories and type constructors are functors
acting on maps between data types, we seek a view of relations that allows us to extend map-based notions
to relations.

First, to see how Set sits inside Rel, note that every map f : A −→ B gives rise to two relations. The first
is written as

A ◦
f∗ // B

and has the graph {(a, f(a) | a ∈ A}. The second is its converse, written as

B ◦
f∗
// A

and has the graph {(f(a), a) | a ∈ A}. Moreover, as it is well-known [48, Def 4.2.1], the relations of the form
f∗ or f∗ for some map f can be recognised inside Rel as precisely the left adjoints:

Proposition 2.5. A relation R is of the form f∗ for some map f iff R is a left adjoint in Rel, that is, iff
there is a (necessarily unique) relation S such that

Id ⊆ S ·R R · S ⊆ Id

Moreover, S = f∗.
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Second, we note that every relation R : A ◦ //B can be tabulated as a span of maps

GR
dR

~~

cR

  

A B

Note that such a span is mono in the sense that if dR ◦ f = dR ◦ g and cR ◦ f = cR ◦ g then f = g.
Importantly, one can recover the relation from the maps:

Proposition 2.6. R = cR∗ · dR∗.

Let us note in passing that any span (W, f, g) represents a relation, namely the relation g∗ ·f∗, which has the
graph {(x, y) | ∃w ∈W . f(w) = x & g(w) = y}. Typically, it is the case that the original span (W, f, g) need
not be of the form (GR, cR, dR) for R = g∗ · f∗. We will see in the next subsection how spans representing
the same relation can be characterised.

As important special cases we note that for every map f : A −→ B, the relations f∗ and f∗ are tabulated
by spans of the form

A

id

��

f

��

A B

and

A
f

��

id

��

B A

(3)

respectively.

To summarize, relations can be tabulated as spans. That spans are pairs of arrows to which we can apply
functors suggests how to define relation lifting.

2.D. Relation lifting

Relation lifting via spans. Given an arbitrary functor T : Set −→ Set, we want to lift a relation

R : A ◦ // B

to a relation
TR : TA ◦ // TB .

According to the previous paragraph, we should tabulate R as (GR, dR, cR), then apply T to dR and cR as
in

T (GR)
T (dR)

{{

T (cR)

##

TA TB

and then reconstruct a relation using (−)∗ and (−)∗ in order to obtain

TR = T (cR)∗ · T (dR)∗ (4)

Observe that the above definition entails equalities T (f∗) = (Tf)∗ and T (f∗) = (Tf)∗, if we use tabula-
tions (3) above. Thus, the relation lifting via spans commutes with taking both graph formations f∗ and
f∗.

Explicitly, according to the definition of composition and of (−)∗ and (−)∗, the definition of relation
lifting in (4) amounts to

GTR = {(t, s) ∈ TA× TB | ∃w ∈ TGR . Tπ1(w) = t, Tπ2(w) = s}, (5)

which we will explicate in a number of examples:
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Example 2.7. Polynomial functors. In the example of A-labelled binary trees, where TX = 1+A×X×X,
we simply have

(a, x1, x2)TR (b, y1, y2) ⇐⇒ a = b & x1Rx2 & y1Ry2

Example 2.8. Powerset functor. Let R ⊆ X × Y and a ⊆ X, b ⊆ Y . Then that the two subsets a, b are
related by P(R) amounts to

a (PR) b ⇔ ∃w ∈ P(GR) . π1[w] = a & π2[w] = b,

where square brackets denote direct image. But this condition is equivalent to

a (PR) b ⇔ (∀x ∈ a .∃y ∈ b . xRy) &

(∀y ∈ b .∃x ∈ a . xRy)

Example 2.9. Distribution functor. Recall from Example 2.4 that DX denotes the set of all probabilistic
distributions on X, i.e., functions p : X −→ [0; 1] with finite support such that

∑
x∈X p(x) = 1. Given a

mapping f : X −→ Y , then Df sends a probabilistic distribution p on X to the probabilistic distribution
(Df)(p) : Y −→ [0; 1] with (Df)(p)(y) =

∑
{x|f(x)=y} p(x). The formula (5) then instantiates to

p D q ⇔ ∃w ∈ D(GR) . (Dπ1)(w) = p & (Dπ2)(w) = q

Hence probability distributions p, q on X and Y , respectively, are related by D iff there is a probability
distribution w on the set {(x, y) | (x, y) ∈ R} such that the equations

p(x) =
∑

{y|(x,y)∈R}

w(x, y) and q(y) =
∑

{x|(x,y)∈R}

w(x, y)

hold for every x in X and every y in Y .

Relation lifting does not need to preserve graphs. In Example 2.7 of a polynomial functor, the
relation lifting was simple because in this case lifting preserves graphs of relations, that is, because for a
polynomial T we have G(TR) ∼= T (GR). This is not true in the other two Examples 2.8 and 2.9. Nevertheless,
the graph GTR of TR can be constructed from TGR by factoring the span (TGR, T (dR), T (cR)) through a
surjection e and a jointly injective span

TGR
e
����

T (dR)

~~

T (cR)

  

GTR

dTRvv cTR ((
TX TY

so that GTR is a subset of TX × TY , namely the graph of TR.

Relation lifting is independent of choice of span. The discussion above highlights that different
spans may represent the same relation. We therefore would like to convince ourselves that the relation lifting
does not depend on which particular spans are chosen as long as they represent the same relation. To this
end let q ◦ e = g and p ◦ e = f in the diagram

W

e
����f

��

g

��

R

p
ww

q
''

X Y

(6)

7



It is immediate from the respective definitions that the two spans (W, f, g) and (R, p, q) describe the same
relation iff q∗ · p∗ = g∗ · f∗ if e is epi. Indeed, e epi is equivalent to e∗ · e∗ = Id, so that we obtain
g∗ · f∗ = q∗ · e∗ · e∗ · p∗ = q∗ · p∗. Since all functors T : Set −→ Set preserve epis, we have (Te)∗ · (Te)∗ = Id,
from which we conclude

(Tg)∗ · (Tf)∗ = (Tq ◦ Te)∗ · (Tp ◦ Te)∗

= (Tq)∗ · (Te)∗ · (Te)∗ · (Tp)∗

= (Tq)∗ · (Tp)∗

This implies the following

Proposition 2.10. Let (f, g) and (h, k) be two spans representing the same relation. Then they give rise
to the same relation lifting, i.e., the equality (Tg)∗ · (Tf)∗ = (Th)∗ · (Tk)∗ holds.

Proof. If (f, g) and (h, k) represent the same relation R, that is, if k∗ · h∗ = g∗ · f∗, then from both spans
there is an epi onto the span (GR, dR, cR) tabulating the graph of R. Now we use twice the fact established
above that any functor T : Set −→ Set preserves diagrams such as (6).

Exact squares and weak pullbacks. We will treat so-called exact squares in more detail later when
they become important for monotone and many-valued relations. For now it is enough to say that a square

W
p

~~

q

  

A

f
  

B

g
~~

C

(7)

is exact, if the two relations defined by the span and the cospan agree, that is, if q∗ · p∗ = g∗ · f∗.

Proposition 2.11. Let (7) be a diagram in Set.
q∗ · p∗ ⊆ g∗ · f∗ iff (7) commutes.
q∗ · p∗ = g∗ · f∗ iff (7) is a weak pullback.

Relation lifting T preserves composition iff T preserves weak pullbacks. In order to understand
whether relation lifting preserves composition, consider the following diagram (where we write RS = R · S
for a more compact notation)

G(RS)

dRS

��

cRS

��

P
dP

yy

cP

%%

e
OOOO

GS
dS

||

cS

&&

GR
dR

xx

cR

""

(8)

In that diagram, the lower zig-zag

R · S = (cR)∗ · (dR)∗ · (cS)∗ · (dS)∗

abbreviated to
RS = cR∗ · dR∗ · cS∗ · dS∗
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is the composition of S and R and the upper outside span

(GRS, dRS, cRS)

is its tabulation, which is formed by taking (P, dP, cP ) to be the pullback of (cS, dR) and then factoring
through an epi e and a mono span (dRS, cRS). Note that it follows from Prop. 2.10 and Prop. 2.11 that
the zig-zag at the bottom and the outer span at the top of (8) describe the same relation.

Applying the functor T to Diagram (8), one calculates as in [10]

T (RS) = T (cRS)∗ · T (dRS)∗ def of T

= (TcR ◦ TcP )∗ · (TdS ◦ TdP )∗ Prop. 2.10

= TcR∗ · TcP∗ · TdP ∗ · TdS∗ functoriality of (·)∗, (·)∗

⊆ TcR∗ · TdR∗ · TcS∗ · TdS∗ Prop. 2.11

= (TR) · (TS) def of T

We have shown that T (R · S) ⊆ (TR) · (TS). By Prop. 2.11 we can replace the ⊆ in the derivation above
by equality, if T preserves weak pullbacks. In other words, T preserves composition if T preserves weak
pullbacks.

For the converse assume that (7) is a weak pullback. Then we have q∗ · p∗ = g∗ · f∗ by Prop. 2.11.
Since T is a 2-functor (it preserves the order between relations), it also preserves adjoints, and it follows
Tq∗ · Tp∗ = Tg∗ · Tf∗, which in turn implies by Prop. 2.11 that the T -image of (7) is a weak pullback. To
summarize,

Theorem 2.12. The relation lifting T satisfies T (R · S) ⊆ (TR) · (TS). Moreover, T (R · S) = (TR) · (TS)
if and only if T preserves weak pullbacks.

A more careful analysis of the above argument will show that Rel is universal wrt the properties of preserving
maps, order, and composition and that the relation lifting T is the unique extension of T from Set to Rel
with these properties. This is the topic of the next section, together with generalisations to monotone and
many-valued relations.

Remark 2.13 (Relation lifting of standard functors). A set-functor T is called standard if every natural
transformation C1,0 −→ T can be uniquely extended to a natural transformation C1 −→ T . Here, C1 :
Set −→ Set is the functor, constant at one-element set, and C1,0 differs from C1 only by putting C1,0∅ = ∅.

Standard functors have many pleasant properties, for example they preserve inclusion. For technical
reasons it is often convenient, and possible without loss of generality, to restrict attention to standard
functors. In fact, every functor T : Set −→ Set has a standard reflection αT : T −→ T̂ , i.e., T̂ is a standard
functor and αT has the obvious universal property. For a summary of some useful properties of the relation
lifting of standard functors we refer to Section 3 of [33].

References. The definition of relation lifting as well as the propositions and the proof of the theorem
are taken from Barr’s paper [10] on relational algebras, with the only exception that he does not explicitly
state the ‘only if’ part of the theorem, which was given in Trnková [53]. Our present account also follows
Carboni-Kelly-Wood [17, Sections 2.2, 4.3] and Hermida [22], who prove more general theorems.

3. The universal property of Rel

Relations can be structured in many different ways. For us, the following facts are the most important.

Relations form a category, that is they can be composed and identity relations are neutral elements of
composition. Moreover, relations are ordered by inclusion and composition is monotone (preserves inclusion).
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Category theoretically, this can be summed up by saying that Rel is a 2-category (2-cells are inclusions), or
more specifically, by saying that Rel is a Pos-enriched category (the set Rel(A,B) of relations from A to B
is partially ordered by inclusion).

For our purposes, we do not need to know the general theory of 2-categories and enriched categories as
the relevant notions simplify greatly in the special case of interest here: A Pos-enriched category, or simply
a Pos-category, is a category where the homsets are equipped with a partial order and the composition is
monotone. A 2-functor or Pos-functor between two Pos-categories is a functor that preserves the order on
homsets (such functors are also called locally monotone).

One of several reasons to emphasise the 2-categorical or Pos-enriched viewpoint is that we are mainly
interested in locally monotone functors. In particular, for us a relation lifting should always satisfy the
implication R ⊆ S ⇒ TR ⊆ TS. One of the technical benefits of working with 2-functors is that
they preserve adjointness. For example, it will be important that f∗ a f∗ is mapped to an adjunction
T (f∗) a T (f∗), in other words, that relation lifting preserves maps. An additional benefit of the Pos-
enriched situation is that the order on the homsets is anti-symmetric and therefore adjoints are not only
determined up to isomorphism but up to equality.

The next bit of important structure are the faithful functors

(−)∗ : Set −→ Rel (−)∗ : Set −→ Relop

that map a function f to the same function f∗ seen as a relation, and its converse f∗.

As in any 2-category, we can speak of adjunctions. Here, this means that a relation R has a left-adjoint L
if and only if

Id ⊆ R · L L ·R ⊆ Id

This happens if and only if L is the graph of a map, that is, if there is a function f such that L = f∗.

3.A. The universal property of Rel(Set)

The next theorem, which can be seen as an important reformulation of Theorem 2.12, explains in which
sense the category Rel is universal over Set. Intuitively, Rel arises from Set by freely adding adjoints to all
maps and by turning epis into split epis.

Theorem 3.1. The functor (−)∗ : Set −→ Rel has the following three properties:

1. (−)∗ preserves maps, that is, every f∗ has a right-adjoint (denoted f∗).

2. q∗ · p∗ = g∗ · f∗ for all weak pullbacks

W
p

~~

q

  

A

f
  

B

g
~~

C

(9)

3. e∗ · e∗ = Id for all epis e.

Moreover, the functor (−)∗ is universal w.r.t. these three properties in the following sense: if K is any
Pos-category to give a locally monotone functor H : Rel −→ K is the same as to give a functor F : Set −→ K
with the following three properties:

1. Every Ff has a right adjoint, denoted by (Ff)r.

10



2. Fq · (Fp)r = (Fg)r · Ff for all weak pullbacks as in (9).

3. Fe · (Fe)r = Id for all epis e.

Proof. The three properties of (−)∗ have been established in Propositions 2.5-2.11. Furthermore, given
H, the functor F = H ◦ (−)∗ satisfies the three properties, because H preserves adjoints by virtue of
being a 2-functor. Conversely, given a functor F with the three properties, we let H(f∗) = Ff . This
determines H on a relation R via H(R) = H(cR∗ · dR∗) = H(cR∗) ·H(dR∗) = F (cR) · F (dR)r, using that
H preserves composition and adjoints. And, analogous to the reasoning following Diagram (8), one shows
that H preserves composition (using that F satisfies properties 2 and 3).

As usual in category theory, an abstract categorical account does not only lead to clean and elegant proofs
but also to generalisations. In fact, the theorem above is only a special case of a theorem by Carboni-
Kelly-Wood in [17, Section 4.3] about relations in regular categories and of theorems by Hermida in [22]
about bicategories of spans in a category with pullbacks. We will see related but different generalisations in
Sections 3.C and 3.D.

We finish this section with a colax version of the theorem, also due to [17], where preservation of composition
is weakened to preservation of composition up to inequality on homsets. The proof is essentially the same
as the one of Theorem 3.1, once one notices that the properties 1–3 of H below guarantee that adjoints
h∗ a h∗ of maps h are preserved by H. Also note that these properties guarantee that H(R ·S) ≤ HR ·HS.

Theorem 3.2. If K is any Pos-category, then to give H : Rel −→ K satisfying

1. H(Id) = Id,

2. H(f∗ ·R) = H(f∗) ·HR,
H(R · g∗) = H(R) ·H(g∗),
H(g∗ · f∗) ≤ H(g∗) ·H(f∗),

3. R ⊆ S ⇒ HR ≤ HS,

is the same as to give a functor F : Set −→ K with the following three properties:

1. Every Ff has a right adjoint, denoted by (Ff)r.

2. Fq · (Fp)r ≤ (Fg)r · Ff for all commuting squares (9).

3. Fe · (Fe)r = Id for all epis e.

Remark 3.3. In [17, Section 2.2], a morphism of categories of relations is an operation H satisfying (a)
H(id) = id and (b) g · R ≤ S · f ⇒ Hg · HR ≤ HS · Hf . It follows from (a) and (b) that H is locally
monotone, preserves adjoints, and restricts to a functor on maps.

Recall that H : Rel −→ Rel is colax if H(Id) ⊆ Id and H(R · S) ⊆ HR ·HS and R ⊆ S ⇒ HR ⊆ HS.
Conditions 1-3 of the theorem are equivalent to saying that H is a colax morphism, that is, that H satisfies
(a), (b) and H(R · S) ≤ H(R) ·H(S). Finally, we note that condition 2 can be replaced by H(f∗) ·HR ≤
H(f∗ ·R) and H(R · S) ≤ HR ·HS.

11



3.B. Relation lifting via Kleisli categories and distributive laws

[This subsection presents a digression from the main thread. It can be skipped. But we think that it is
important to point out that relation lifting can, and often is, described as a Kleisli lifting. As we will see,
this description carries over to the generalisations of the following subsections.]

So far, one of the main ideas was to look at relations as spans. Another important idea, which is equivalent
but has different generalisations, is to think of a relation as a many-valued function, that is, as a function

X −→ PY

where PX is the set of subsets of X. To compose

X
f−→ PY Y

g−→ PZ

we note that we can lift g from elements of Y to a function g] on subsets of Y , which allows us to define
g · f = g] ◦ f . Formally, we define the operation (−)] : Set(Y,PZ) −→ Set(PY,PZ) via

g](b) =
⋃
{g(y) | y ∈ b}.

The abstract structure of this example has a simple axiomatisation [38, Chapter 1.3 (Definition 3.2 and
Exercise 12)]:

Given a category C, let M be a map (which is not required to be functorial at this stage) from objects of C
to objects of C (think of M = P and C = Set). Let ηX : X −→ MX be a collection of arrows in C and let

(−)]Y,Z be a collection of functions C(Y,MZ) −→ C(MY,MZ). Then (M,η, (−)]) is called a Kleisli triple
if

η] = id

f ] ◦ η = f

(g] ◦ f)] = g] ◦ f ]

In fact, the above axiomatisation allows us to extend the assignment X 7→ MX uniquely to a functor
M : C −→ C such that the collection ηX becomes a natural transformation from Id to M , and, when one
defines µX : MMX −→ MX by putting µX = (idMX)], then µ is a natural transformation from MM to
M . The above axioms guarantee that (M,η, µ) is a monad. Conversely, every monad (M,η, µ) yields a
Kleisli triple by defining f ] = µZ ◦Mf : MY −→MZ for f : Y −→MZ. See [38] for details.

Coming back to the example above, the assignment X 7→ PX, together with the collection ηX(x) = {x}
of singleton maps and with

g](b) =
⋃
{g(y) | y ∈ b}

is easily seen to form a Kleisli triple.

Kleisli triples gives rise to categories, the Kleisli categories, which tend to resemble categories of relations.
Given a Kleisli triple (M,η, (−)]) on a category C, the Kleisli category Kl(M), see [31, 37], has the same
objects as C and arrows X ⇀ Y in Kl(M) are arrows X −→MY in C. The identity on X in Kl(M) is given
by ηX and the composition g · f in Kl(M) is given by the composition g] ◦ f in C. As to be expected for a
‘category of relations’ there is an identity-on-objects functor

(−)? : C −→ Kl(M)

taking an arrow f : X −→ Y to a ‘map’ ηY ◦ f : X ⇀ Y . On the other hand, there need to be no analogue
of the converse of a relation nor of the order between relations.

12



Relation lifting via distributive laws. We discussed previously how to lift a relation by applying a
functor T to the span tabulating the relation. Here, the idea is that a relation lifting T̃ takes a relation

X −→ PY
and applies the functor T to X −→ PY and composes with a so-called distributive law TP −→ PT to
obtain

TX −→ TPY −→ PTY,
which is a relation between TX and TY .

Beck’s theorems on distributive laws. In a famous paper, Beck [13] shows (among other things) that
there is a one-to-one correspondence between certain liftings of functors and certain natural transformations
called distributive laws. In fact, the article opens with the observation that the well-known distributive law
in rings of multiplication over addition corresponds to a natural transformation

MonAb −→ AbMon

between the monad Mon for monoids and the monad Ab for abelian groups. This natural transformation,
then also called a distributive law, is exactly what is needed to show that AbMon is itself a monad (the
monad of rings) and it is also exactly what is needed to show that Ab lifts from a monad on sets to a monad
on monoids. Our situation is a variant on the above where P is a monad but T is just a functor and where
the lifting is not to a category of algebras but to a Kleisli category. The theory that allows us to consider
Beck’s original theorem and all of its variants as special cases of the same construction is due to Street [51].

The variant relevant for us is the theorem that states that a functor T : C −→ C can be extended to a
functor T̃ making the square

Kl(M)
T̃ // Kl(M)

C

(−)?

OO

T
// C

(−)?

OO

(10)

commutative if and only if there is a natural transformation, called a distributive law of T over M ,

λ : TM −→MT

satisfying

λ ◦ Tη = ηT

µT ◦Mλ ◦ λM = λ ◦ Tµ

To give a specific example, take C = Set and M = P and λ the distributive law of T over P such that T̃ = T .
This distributive law is obtained from applying T to the elementship relation

3X : PX ◦ // X

T (3X) : TPX ◦ // TX

λ : TPX −→ PTX

A good illustration of the use of this distributive law is Power and Turi [43], where it is used to obtain trace
semantics from the coalgebraic bisimulation semantics. See also [21] for more information on this topic.

Question: In the case of Set the existence of a distributive law is weaker then the existence of a relation
lifting as T̃ in (10) is not required to be locally monotone. Is there an example of a Kleisli lifting T̃ that is
not a relation lifting?

In the ordered and many-valued setting considered below, this problem disappears if one takes, as we do,
the perspective of enriched category theory where all functors are locally monotone. Accordingly, relation
lifting and Kleisli lifting (for a suitable power-functor) match up.

13



3.C. Monotone relations

After having considered relations R : A ◦ // B as spans

GR
dR

~~

cR

  

A B

and as Kleisli-arrows
A −→ PB

we now bring into the picture relations as functions

X × Y −→ 2,

or rather as monotone functions
Xop × Y −→ 2

where X,Y are posets (or preorders). For example, if X is a set of states equipped with an order of
approximation and Y is a set of propositions ordered by implication or derivability, then a monotone relation


 : X ◦ // Y

is a monotone map
Xop × Y −→ 2,

where monotonicity amounts to saying that 
 is weakening-closed, that is,

x′ ≤ x x 
 y y ≤ y′

x′ 
 y′

Weakening-closed relations are pervasive in logic and domain theory and provide an important motivation for
monotone relations. For example, if X = Y , then the order on a distributive lattice (or Heyting or Boolean
algebra) is a monotone relation. Similarly, the ‘`’ of sequent calculi is typically a monotone relation on
the preorder of propositions. Another example is given by proximities (see condition (3) in Definition 3 of
Smyth [49]), which play an important role in domain theory [27, 26, 29].

In the remainder of this section, we quickly go through the material we have seen so far, but generalise it
to the ordered setting, referring to [14] for full details.2 Even though everything we have said generalises
with the appropriate modifications, notice that the converse Rop of a relation R not just exchanges domain
and codomain. In fact, a relation R : A ◦ // B , being a monotone function Aop × B −→ 2, gives rise to

a converse Rop : Bop ◦ // Aop between the opposite orders. In particular, we cannot compose a relation
with its converse.

As in (2), given monotone relations

A ◦
R // B and B ◦

S // C

2This generalisation is not covered by [17] or [22]. In this context it is worth noting that Pos and Preord are not regular
categories, which would require that the pullback of a coequalizer is a coequalizer. To see that this is not always the case,

consider the coequalizer

c c

b1 b2

OO

// b

OO

a

OO

a

OO and pull it back along the inclusion

c c

// b

OO

a

OO

a

OO .
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the composition

A ◦
S·R // C

is given by

S ·R(a, c) =
∨
b

R(a, b) ∧ S(b, c) (11)

where
∨

and ∧ are taken in the lattice 2 (and can be read as ‘there exists’ and ‘and’, respectively).

The identity relation on A, also called A, is given by the order on A and we write

Id(a, a′) = A(a, a′)

instead of a ≤A a′.

What should be the graph of a monotone function f : A −→ B? Here we have two (ultimately equivalent)
choices corresponding to whether we generalise fa = b to fa ≤ b or b ≤ fa. We can take as the graph of f
the set {(a, b) | b ≤ fa} which corresponds to the relation B ◦ // A

λa, b .B(b, fa) : Bop ×A −→ 2

or we can take {(a, b) | fa ≤ b} which corresponds to the relation A ◦ // B

λa, b .B(fa, b) : Aop ×B −→ 2

As a mapping of f , the first, f 7→ λa, b . B(b, fa), is monotone but contravariant, and the second, f 7→
λa, b . B(fa, b), is covariant but antitone. In [14] we used the first alternative, here we use the second, that
is, we let f∗ = λa, b . B(fa, b). We do not need to be disturbed by the antitonicity, which is familiar in the
special case where f, g are constants: f ≤ g ⇔ ↑g ⊆ ↑f . In other words, the choice we have is analogous
to the choice of whether one represents an element of a poset by its principal downset or principal upset.

Thus, we have functors

(−)∗ : Pos −→ Rel(Pos)co

A 7→ B

f : A −→ B 7→ λa, b . B(fa, b)

f ≤ g 7→ g∗ ≤ f∗

where the co indicates that only the order on the 2-cells gets reversed and

(−)∗ : Pos −→ Rel(Pos)op

A 7→ B

f : A −→ B 7→ λa, b . B(b, fa)

f ≤ g 7→ f∗ ≤ g∗

where the op indicates that only the direction of the 1-cells gets reversed. As in the unordered case we have
f∗ a f∗ in Rel(Pos) with unit

A(a, a′) ≤ f∗ · f∗(a, a′) =
∨
b

B(fa, b) ∧B(b, fa′)

and counit ∨
a

B(b, fa) ∧B(fa, b′) = f∗ · f∗(b, b′) ≤ B(b, b′)
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where again ≤,
∨
,∧ are taken in 2. As in Proposition 2.5, it remains true that a monotone relation arises

from a monotone function iff it is left-adjoint. 3 And, as in Proposition 2.6, every monotone relation R can
be tabulated as a span (GR, dR, cR). The definition of the relation lifting of a relation R wrt a functor
T : Pos −→ Pos (or a functor T : Preord −→ Preord) is then defined in the same way as for ordinary relations
in (4):

TR = T (cR)∗ · T (dR)∗ (12)

Remark 3.4. In the discrete case, an arbitrary span is (isomorphic to) the graph (GR, dR, cR) of a relation
R if and only if the span is a mono-span (that is, if the corresponding map into the product is mono). In
the ordered case, one needs to add a condition making sure that the relation corresponding to the span is
monotone. We say that (W,d0 : W −→ X, d1 : W −→ Y ) is a weakening-closed span if

∀z′ ∈W.∀x ∈ X.x ≤ d0(z
′) ⇒ ∃z ∈W.z ≤ z′ & d0(z) = x & d1(z) = d1(z

′) (13)

∀z ∈W.∀y′ ∈ Y.d1(z) ≤ y′ ⇒ ∃z′ ∈W.z ≤ z′ & d0(z
′) = d0(z) & d1(z

′) = y′ (14)

which is best remembered by the pictures

x
z

��

y′

x′
z′

y′

x
z

y

��

x
z′

y′

There is a bijective correspondence between weakening-closed mono-spans in Pos (taken up to isomorphism)
and monotone relations in Pos. This correspondence preserves compositions of relations, that is, taking the
pullback of two spans and factoring it onto/embedding corresponds to the composition of the corresponding
monotone relations.

Relation lifting is independent of choice of span. If two weakening-closed spans

W

f

~~

g

  

X Y

and

W ′

f ′

~~

g′

  

X Y

represent the same monotone relation X ◦ // Y , then the maps 〈f, g〉 and 〈f ′, g′〉 into X × Y have the
same image (with the order on the image inherited from the order on X ×Y ). In other words, factoring the
spans onto/embedding results in isomorphic spans. This leads us to consider the following diagram with
q ◦ e = g and p ◦ e = f .

W

e
����f

��

g

��

R

p
ww

q
''

X Y

(15)

3We want to show that A(a, a′) ≤
∨

b R(a, b)∧S(b, a′) and
∨

a S(b, a)∧R(a, b′) ≤ B(b, b′) only if R(a, b) = B(fa, b) for some
f : A −→ B. First consider the special case where A is the one element set. Then R is an upset, S is a downset, and the two
inequalities ensure that there is f ∈ B such that S = ↓f and R = ↑f , or, in our notation, S(b, a) = B(b, f) and R(a, b) = B(f, b).
In the general case, the same reasoning gives an fa for each a ∈ A with S(b, a) = B(b, fa) and R(a, b) = B(fa, b).

Remark: In the discrete case the two inequalities can be understood as separately defining that R is total and that R is
single-valued. In the ordered case, being single-valued is replaced by being a principal upset, but this needs both inequalities
simultaneously.
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The crucial property here is again that e satisfies

e∗ · e∗ = Id

or, explicitly,

R(r, r′) =
∨
w

R(r, ew) ∧R(ew, r′).

If R is a poset, then this property says exactly that e is onto. If R is a preorder, then it says that e hits all
equivalence classes of R. In [12] such an e is said to be ‘absolutely dense’. In Set all onto maps split, but
this is not the case in Pos or Preord. On the other hand, as we have just said, we still have that e is onto in
Pos iff e∗ splits in Rel(Pos).

Now, the same reasoning as above for Proposition 2.10, shows that if two weakening closed spans represent
the same monotone relation, then they give rise to the same relation lifting.

Proposition 3.5. The two weakening closed spans in Diagram (15) represent the same relation, ie g∗ ·f∗ =
q∗ · p∗, if e∗ · e∗ = Id.

Exact squares. Exact squares where introduced by Guitart [20]. Their importance for us is that they
generalise weak pullbacks to the ordered setting. A square

W
p

~~

q

  

A

f
  

≤ B

g
~~

C

(16)

in Pos or Preord (or, more generally, in any Pos-category) is called exact, if

f ◦ p ≤ g ◦ q
∀a, b . (fa ≤ gb ⇒ ∃w . a ≤ pw & qw ≤ b)

The next proposition characterises exact squares in Pos and Preord as those squares where the upper span
and the lower cospan represent the same relation:

q∗ · p∗ = g∗ · f∗.

(Recall that f ≤ g ⇔ g∗ ≤ f∗.)

Proposition 3.6. Let (16) be a diagram in Pos or Preord.
q∗ · p∗ ≤ g∗ · f∗ iff (16) commutes laxly, that is, iff f ◦ p ≤ g ◦ q.
q∗ · p∗ ≥ g∗ · f∗ iff ∀a, b . (fa ≤ gb ⇒ ∃w . a ≤ pw & qw ≤ b).

Proof. The first statement follows from using once each of the following general facts about adjoints l a r.

l · u ≤ v ⇔ u ≤ r · v and k · r ≤ h ⇔ k ≤ h · l

For the second statement we note that g∗ · f∗ ≤ q∗ · p∗ is by definition of (−)∗ and (−)∗ the same as∨
c

A(fa, c) ∧B(c, gb) ≤
∨
w

A(a, pw) ∧B(qw, b),

which is equivalent to

C(fa, gb) ≤
∨
w

A(a, pw) ∧B(qw, b), (17)

which in turn is just a different notation for fa ≤ gb ⇒ ∃w . a ≤ pw & qw ≤ b.
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Relation lifting T preserves composition iff T preserves exact squares. Recall Diagram (8). We
consider the same diagram, but now in Pos or Preord,

G(RS)

dRS

��

cRS

��

P
dP

yy

cP

%%

e
OOOO

GS ≤

dS
||

cS
&&

GR

dR
xx

cR
""

(18)

where now (P, dP, cP ) is the the ordered version of a pullback, known as a comma-square, and defined
as P = {(s, r) | cS(s) ≤ dR(r)}. As before e is the surjection (epi) that arises from factoring the span
(dS ◦ dP, cR ◦ cP ) through a mono-span (dRS, cRS). Exactly as in the reasoning for Theorem 2.12 we
obtain the analogous theorem for monotone relations.

Theorem 3.7. Let T be an endofunctor on Pos preserving epis. Then the relation lifting T satisfies the
inclusion T (R ·S) ⊆ (TR) · (TS). Moreover, T (R ·S) = (TR) · (TS) if and only if T preserves exact squares.

It is worth noting that preserving exact squares implies preserving epis.

Analogous to Theorem 3.1, one can show that the category Rel(Pos), and Rel(Preord), of monotone relations
has a universal property.

Theorem 3.8. The locally monotone functor (−)∗ : Pos −→ Rel(Pos)co has the following three properties:

1. (−)∗ preserves maps, that is, every f∗ has a right-adjoint f∗ in Rel(Pos).

2. q∗ · p∗ = g∗ · f∗ for all exact squares

W
p

~~

q

  

A

f
  

≤ B

g
~~

C

(19)

3. e∗ · e∗ = Id for all epis e.

Moreover, the functor (−)∗ is universal w.r.t. these three properties in the following sense: if K is any Pos-
category to give a locally monotone functor H : Rel(Pos) −→ K is the same as to give a locally monotone
functor F : Pos −→ Kco with the following three properties:

1. Every Ff has a right adjoint in K, denoted by (Ff)r.

2. Fq · (Fp)r = (Fg)r · Ff for all exact squares as in (19).

3. Fe · (Fe)r = Id for all epis e.
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3.D. Many-valued relations

We now turn our attention to the relation lifting of many-valued relations. A many-valued relation is a
generalisation of a monotone relation in the sense that in

R : Aop ×B −→ 2

one replaces the two-element lattice 2 by a lattice V of “values”. In doing that, we need to reconsider the
nature of A and B as well: for monotone relations, A and B were posets or preorders, for a general V the
objects A and B are best thought of as metric spaces with the distance measured in V. This approach to
metric spaces via enriched category theory was pioneered by Lawvere [35].

The basic definitions, which are instances of broader notions of enriched category theory [30], are as
follows:

1. V is a commutative quantale. This means that V is a complete lattice (the lattice operations are
denoted by ∧ and ∨) equipped with a commutative monoid structure (the monoid multiplication is
denoted by ⊗, its unit by e) such that the multiplication is monotone in both variables and such that
the equality

a⊗
∨
i∈I

xi =
∨
i∈I

a⊗ xi

holds for any I-tuple (xi) of elements of V. The above distributive law is equivalent to the existence
of “implication”, namely, a( b is an element of V that satisfies the following property x ≤ a( b iff
a⊗ x ≤ b, for any x.

Examples: the lattice 2 is a commutative quantale, when one defines ⊗ to be ∧ and e = 1. In
fact, every complete Heyting algebra (hence, in particular, every complete Boolean algebra) is a
commutative quantale.

Another example is the extended nonnegative reals [0; +∞] with the reversed order (so that +∞ is the
least element), the lattice operations being given by maximum and minimum, and the tensor product
x⊗ y = x+ y. Thus, V-categories are the generalised metric spaces [35].

2. Given a commutative quantale V, a (small) V-category A is given by a set A0 of objects, together with
the “distance” A(a′, a) in V for any pair a′, a of objects. The distance has to satisfy the following two
axioms

e ≤ A(a, a), A(a′′, a′)⊗A(a′, a) ≤ A(a′′, a)

Examples: every poset A becomes a 2-category if we set A(a′, a) = 1 iff a′ ≤ a. In fact, it is easy to
see that 2-categories are precisely the preorders, since the above two axioms on distance spell out as
reflexivity and transitivity.

A V-category A for the quantale [0; +∞] of extended nonnegative reals is a metric space in a rather
broad sense. The axioms for distance then say A(a, a) = 0 and A(a′′, a) ≤ A(a′, a) +A(a′, a).

The quantale V itself becomes a V-category if we set V(x′, x) = x′ ( x. The quantale axioms ensure
that inequalities

e ≤ x( x, (x′′( x′)⊗ (x′( x) ≤ x′′( x

hold.

3. As the above terminology suggests, there should be the notion of a V-functor that generalises the
notion of a monotone map or a nonexpanding map. Indeed, given two V-categories A, B, a V-functor
f : A −→ B is given by the object assignment f : A0 −→ B0 subject to the axiom

A(a′, a) ≤ B(fa′, fa)

It is then easy that V-functors encode precisely the monotone mappings in case V = 2 and nonex-
panding mappings in case V = [0,+∞].
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4. Since V-functors clearly compose, we have defined a category V-cat. Moreover, V-cat is enriched
in posets, since V-functors can be compared. In ordinary category theory, a “comparison” of two
functors is done by introducing natural transformations. In the case we study here, the situation is
essentially the same, although “naturality” boils down to a simple condition, since the structure of V
is rather simple. Explicitly, given V-functors f : A −→ B, g : A −→ B, there is at most one “natural
transformation” from f to g and will be denoted as an inequality:

f ≤ g iff fa ≤ ga for every a in A

From now on we fix a commutative quantale V. The notions of relations, exact squares, etc are straightfor-
ward generalisations of the notions for monotone relations:

1. A V-valued relation R : A ◦ // B is a V-functor R : Aop⊗B −→ V. Here, Aop has the same objects
as A, only the distance is “reversed”: Aop(a′, a) = A(a, a′). And X ⊗ Y denotes, for V-categories
X and Y , the “product” having pairs (x, y) as objects with the distances (X ⊗ Y )((x′, y′), (x, y)) =
X(x′, y′)⊗ Y (y′, y).

In what follows we will write R(a, b) for the value of the functor R at (a, b). The fact that R is a
V-functor can be expressed in an elementary fashion by two inequalities

A(a′, a)⊗R(a, b) ≤ R(a′, b), R(a, b)⊗B(b, b′) ≤ R(a, b′)

that clearly generalise the weakening-closedness of monotone relations.

Examples: every monotone relation is a 2-relation. Every V-category A gives rise to the identity
relation idA : Aop ⊗A −→ V with idA(a′, a) = A(a′, a).

2. Given V-valued relations R : A ◦ // B and S : B ◦ // C , their composite is the relation S ·R : A ◦ // C
with

(S ·R)(a, c) =
∨
b

S(b, c)⊗R(a, b)

It is easy to see that the above composition is associative and has the identity relations idA : A ◦ // A
as identities.

Hence we obtain a category V-Rel of V-relations. Analogously to the case of monotone relations, the
category V-Rel can be seen as enriched in posets, if we set

R ≤ S iff R(a, b) ≤ S(a, b), for every a, b

for relations R : A ◦ // B , S : A ◦ // B .

3. For every V-functor f : A −→ B there are again two ways of making a V-relation out of it:

f∗(a, b) = B(fa, b), f∗(b, a) = B(b, fa)

And, again, the above two “graph constructions” constitute two locally monotone functors

(−)∗ : V-cat −→ V-Relco, (−)∗ : V-cat −→ V-Relop

So far, the many-valued notions were rather straightforward generalisations of the “monotone” notions.
Alas, the next step, namely, the tabulation of relations fails.

Example 3.9. Suppose V is the three-element lattice ⊥ < a < > with meet as the tensor product. Let A
be the V category on one object x with A(x, x) = > and let R : A ◦ // A be the relation R(x, x) = a.
We claim that R cannot be tabulated.
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Supposing the contrary, let a span
Q

p

��

q

��

A A

tabulate R. Then the composite q∗ · p∗ has the value

(q∗ · p∗)(x, x) =
∨
w

A(x, pw) ∧A(qw, x)

However, if Q is empty, the above join evaluates to ⊥ and if Q is nonempty, it evaluates to >. Hence
(q∗ · p∗) 6= R, a contradiction.

Luckily, one can prove that cotabulations of V-relations work nicely. Thus, we say that a V-relation
R : A ◦ // B is cotabulated by a cospan

A

i
��

B

j
��

C

of V-functors, if the equality R = j∗ · i∗ holds. There is a prominent cospan that cotabulates relation R; its
collage:

A

iA ""

B

iB||

coll(R)

The V-category coll(R) has the disjoint union A0 +B0 as objects and the “distances” are defined as follows

coll(R)(a′, a) = A(a′, a), coll(R)(b′, b) = A(b′, b), coll(R)(a, b) = R(a, b), coll(R)(b, a) = ⊥

for all a′, a in A0 and all b′, b in B0.
The V-functor iA : A −→ coll(A) sends a to a and similarly for iB . Notice that both iA and iB have

a special property: they are fully faithful . A general V-functor j : X −→ Y is fully faithful if we have
X(x′, x) = Y (jx′, jx) for all x′, x.

In fact, V-functors that are fully faithful play the same role as the epimorphisms played in the set case.
In fact, all of the properties of epimorphisms one needed for relation liftings, now hold for fully faithful
V-functors. The properties are however dualised since we work with cospans and not spans. Thus, for
example:

1. A V-functor j is fully faithful iff the equality j∗ · j∗ = Id holds.

2. Fully faithful functors are the “mono part” of a factorisation system on V-cat. The corresponding “epi
part” of the factorisation system contains all V-functors that are cotuplings of collages of a V-relation.

3. Two cospans represent the same relation if they are connected by a fully faithful V-functor.

It is now straightforward to define a relation lifting of a locally monotone functor T : V-cat −→ V-cat by
setting

(T )(R) = j∗ · i∗ where (C, i, j) cotabulates R

This definition is independent of the choice of the cospan and allows one to characterise locally monotone
functors T : V-cat −→ V-cat that admit a locally monotone functorial lifting T : V-Rel −→ V-Rel as precisely

21



those T that preserve exactness of lax squares in V-cat (this is called the Beck-Chevalley condition on T ),
see [15, Corollary 5.11]. Note that again exact squares are the appropriate generalisation of a weak pullback.

Here, a square
W

p

~~

q

  

A

f
  

≤ B

g
~~

C

of V-functors is called exact if the equation

C(fa, gb) =
∨
w

A(a, pw)⊗B(qw, b)

holds for all a and b.
The universal property of V-Rel over V-cat can be formulated in an analogous way to the monotone case

(notice that epi are traded for fully faithful and the condition is dualised):

Theorem 3.10 ([15]). Suppose V is a commutative quantale. The locally monotone functor (−)∗ : V-cat −→
V-Relco has the following three properties:

1. (−)∗ preserves maps, that is, every f∗ has a right-adjoint (denoted f∗).

2. q∗ · p∗ = g∗ · f∗ for all exact squares

W
p

~~

q

  

A

f
  

≤ B

g
~~

C

3. j∗ · j∗ = Id for every fully faithful j.

Moreover, the functor (−)∗ is universal w.r.t. these three properties in the following sense: if K is any
Pos-category to give a locally monotone functor H : V-Rel −→ K is the same as to give a locally monotone
functor F : V-cat −→ Kco with the following three properties:

1. Every Ff has a right adjoint, denoted by (Ff)r.

2. Fq · (Fp)r = (Fg)r · Ff for all exact squares as above.

3. (Fj)r · Fj = Id for all fully faithful j.

3.E. Relators

The notion of relator appears in different places with different meanings, but generally refers to a functor
Rel −→ Rel with certain properties. Due to the variety of different definitions, we use relator as a generic
term made precise in different ways. We give a short overview of some of the variations encountered in
the literature. Roughly speaking, whereas relation liftings preserve identities, composition and order, the
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various notions of relators weaken these requirements. For example, as we will see, relation liftings of Set-
functors capture bisimulation whereas relators allows us to capture simulation (and thus are closely related
to relation liftings of Pos-functors).

According to Abramsky and Jensen [1] a relator Rel −→ Rel preserves identities and maps but not necessarily
composition. The emphasis of [1] is on relators as types, on terms as transformations of relators and
on polymorphic invariance. The work of Backhouse and collaborators, see eg [8], also emphasises type
constructors on relators and uses initial fixpoints of relators for program development in the Bird-Meertens
formalism. A relator H in the sense of [8] preserves composition, inclusion and converse of relations and
satisfies H(Id) ⊆ Id.

Most relevant from our perspective are the relators of Carboni, Kelly, and Wood [17] and Thijs [52]. To
start with, note that Theorem 3.1 has as a corollary the following.

Theorem 3.11 ([17]). There is a bijection between locally monotone functors Rel −→ Rel and weak pullback
preserving functors Set −→ Set.

As it is clear from the proof of Theorem 3.1, the correspondence is as follows. Since a locally monotone
functor Rel −→ Rel preserves adjoints it does preserve maps and restricts to Set. Conversely, a weak pullback
preserving functor Set −→ Set extends via relation lifting to a locally monotone functor Rel −→ Rel.

In the above correspondence, one can weaken the requirements and Theorem 3.2 and Remark 3.3 have
the following corollary. (Here and in the following we assume that operations H : Rel −→ Rel are graph

homomorphisms, that is, if R : X ◦ // Y then HR : HX ◦ // HY .)

Theorem 3.12 ([17]). There is a bijection between operations H : Rel −→ Rel satisfying

(a) IdHA = H(IdA)

(b) g ·R ⊆ S · f ⇒ Hg ·HR ⊆ HS ·Hf
(c≥) H(R · S) ⊆ HR ·HS

and functors T : Set −→ Set.

In the two theorems above, the relators H : Rel −→ Rel are tabulation-defined, that is, they satisfy H(cR∗ ·
dR∗) = H(cR∗) · H(dR∗) and are determined by their action on maps, so that H and T determine each
other via Tf = Hf∗.

But, as we will see now, there are good reasons to be interested in relators that are not tabulation-defined.
Recall Example 2.8 of the powerset functor. The ‘back and forth’ conditions (∀x ∈ a∃y ∈ b . . .) & (∀y ∈
b∃x ∈ a . . .) describing P correspond, as we will see in the next section, to bisimulation. But any of the
two conjuncts on its own gives a good notion of simulation. The idea of how to weaken tabulation-defined
relators in order to account for simulation is due to [52] and illustrated in the following

Example 3.13. Let R : X ◦ // Y and a ∈ PX and b ∈ PY . We have

∀x ∈ a .∃y ∈ b . xRy ⇐⇒ (a, b) ∈ ⊆ · P(R) · ⊆
∀y ∈ b .∃x ∈ a . xRy ⇐⇒ (a, b) ∈ ⊇ · P(R) · ⊇

This suggests that whereas bisimulation arises from tabulation-defined relators, simulation arises from pre-
and post-composing tabulation-defined relators with preorders. If T : Set −→ Set factors through a functor
G : Set −→ Preord as T = V G with V : Preord −→ Set then G is called an extension of T in [52] and an
order on T in [25]. (The definition of extension in [52, Def.2.2.1] has an extra condition which reflects the
fact that all functors in [52] are standard, see Remark 2.13.)

The next proposition summarises the properties of the relator H induced by an order G on T .
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Proposition 3.14 ([52]). Let G : Set −→ Preord be an order on T : Set −→ Set. Then mapping

R : X ◦ // Y to
HR = GX · T (R) ·GY

satisfies

(a≤) IdTA ⊆ H(IdA)

(c≥) H(R · S) ⊆ HR ·HS
(m) R ⊆ S ⇒ HR ⊆ HS
(e) Tf∗ ·H(R) · Tg∗ ⊆ H(f∗ ·R · g∗)

Comparing the relators H : Rel −→ Rel satisfying (a≤), (c≥), (m), (e) with the relators of Theorem 3.12, we
find that the only difference is that preservation of identities is weakened. To make the comparison easier,
we state the following lemma, see [17, Section 2].

Lemma 3.15. Let T : Set −→ Set be a functor and H : Rel −→ Rel an operation. Then

f∗ ·R ⊆ S · g∗ ⇒ Tf∗ ·HR ⊆ HS · Tg∗

is equivalent to H being locally monotone plus any of the following

Tf∗ ·H(R) · Tg∗ ⊆ H(f∗ ·R · g∗)
H(f∗ · S · g∗) ⊆ Tf∗ ·HS · Tg∗

The last two conditions are often written as

(Tg × Tf)[H(R)] ⊆ H((g × f)[R])

H((g × f)−1S) ⊆ (Tg × Tf)−1HS

If we strengthen condition (c≥) to equality, we obtain a theorem similar to Theorems 3.11 and 3.12. It is
essentially [52, Thm 2.2.3] with the condition on the order taken from [36] and [25].

Theorem 3.16. Given T : Set −→ Set there is a bijection between operations H : Rel −→ Rel satisfying

(a≤) IdTA ⊆ H(IdA)

(c) H(R · S) = HR ·HS
(m) R ⊆ S ⇒ HR ⊆ HS
(e) Tf∗ ·H(R) · Tg∗ ⊆ H(f∗ ·R · g∗)

and orders G on T mapping weak pullbacks to exact squares.

The theorem characterises T -relators in terms of the induced order G on T . Alternatively, one can extend G
to a functor T ′ : Preord −→ Preord and then consider the relation lifting H ′ : Rel(Preord) −→ Rel(Preord) of
Section 3.C. A categorical characterisation of which functors Preord −→ Preord arise in this way is given by
[9, Thm 4.13] (replacing Pos by Preord). As observed in [52, 36, 39] many important properties of relators
still work if one insists only on lax preservation of composition:

Definition 3.17. A T -relator H is an operation that maps relations R : A ◦ // B to HR : TA ◦ // TB
subject to

(a≤) IdTA ⊆ H(IdA)
(c≤) HR ·HS ⊆ H(R · S)
(m) R ⊆ S ⇒ HR ⊆ HS
(e) Tf∗ ·H(R) · Tg∗ ⊆ H(f∗ ·R · g∗)
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It is easy to see (a≤) and (c≤) guarantee that H(IdA) is a preorder and, due to (e), that Tf :
(X,H(IdX)) −→ (Y,H(IdY )) is monotone for all f : X −→ Y . Thus, similarly to the situation described
in the previous theorem, a T -relator allows us to extend T to a functor T ′ : Preord −→ Preord. We refer to
[36] for more information and for an example of a relator that does not preserve composition. [39] shows
that a finitary functor T has a separating set of monotone predicate liftings iff T has a ‘lax-relation lifting
preserving diagonals’, ie a T -relator in the sense of Definition 3.17 satisfying (a). This usage of ‘lax’ is
different from [25], see Lemma 5.3 op.cit.

4. Applications

We present two applications. In the first, one defines (bi)simulations via relators. By varying the base
category from sets to preorders or even to (generalised) metric spaces one goes from bisimulation via simu-
lation to metric simulation. For this, one does not need that relators preserves composition. In the second
application relation lifting is used to define the semantics of Moss’s ‘cover modality’ ∇T capturing the logical
content of the type-functor T . Here, preservation of composition plays a role in order to obtain invariance
of the logic under (bi)similarity.

4.A. Simulation and bisimulation

According to the Park-Milner definition of bisimulation, a bisimulation is a post-fixed point and bisimilarity
is the greatest fixed point, see Remark 4.2 below and [46] for the history and further references. Based on
the notion of relation lifting, the Rutten [44] generalises this to coalgebras. In the discrete situation of Set
it gives bisimulation, in the ordered setting of Preord or Pos it gives simulation and for V-cat one obtains a
metric version studien in detail by Worrell [56].

Bisimulations arise from relation lifting for endo-functors on Set.

Definition 4.1. Let T : Set −→ Set be a functor and ξ : X −→ TX and ξ′ : X ′ −→ TX ′. Then R is a
T -bisimulation if

X
ξ

//

R

��

TX

TR

��

⊆

X ′
ξ′

// TX ′

(20)

Remark 4.2. It is useful to note the following equivalent ways of rendering (20)

1. ξ′∗ ·R ⊆ TR · ξ∗

2. R ⊆ ξ′∗ · TR · ξ∗

3. xRx′ ⇒ ξ(x) (TR) ξ′(x′)

4. R ⊆ ((ξ × ξ′)−1 ◦ T )(R)

the last of which emphasises that R is a post-fixed point of the monotone operator (ξ × ξ′)−1 ◦ T .

Spelling out the leading examples, we find that this definition gives the expected results. For example,
use item (3) of the remark above together with Example 2.8 to obtain:
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Example 4.3. Given x ∈ X ξ−→ PX and x′ ∈ X ′
ξ′

−→′ PX ′, we have that R is a bisimulation iff

xRx′ ⇒ (∀y ∈ ξ(x) .∃y′ ∈ ξ′(x′) . x′Ry′) &

(∀y′ ∈ ξ′(x′) .∃y ∈ ξ(x) . x′Ry′)

Remark 4.4. From the point of our exposition, the “⊆” in (20) is a 2-cell in a 2-category where relations are
arrows. From another point of view, one can also interpret the “⊆” as a lifted coalgebraic structure where
relations are objects in a fibered category and inclusions are arrows. We don’t pursue this very interesting
alternative but refer to Hermida and Jacobs’s original [23] and to [32, 16] for examples of further work in
this direction.

As remarked above it is tempting to view R ⊆ TR as a coalgebra. A related, but again different idea is
expressed by the following definition, saying that a relation is a bisimulation if it can be equipped with a
coalgebra structure making the projections into homomorphisms.

Definition 4.5 (Aczel-Mendler [4]). R ⊆ X × X ′ is a AM-bisimulation between coalgebras (X, ξ) and
(X ′, ξ′) if there is a coalgebra structure ρ on R such that the projections X ← R → X ′ become coalgebra
morphisms

X

ξ

��

Roo //

ρ

��

X ′

ξ′

��

TX TRoo // TX ′

A comparison of this definition with (20) shows that the two definitions differ only by using, respectively,
TR or TR. The following proposition now follows directly from the fact that the tabulation of T (R) is
constructed by epi-mono factoring the TR-span, plus the fact that epis split in Set. (In general the two
definitions are not equivalent, see [50] for a detailed comparison of coalgebraic notions of bisimulation.)

Proposition 4.6. R is a bisimulation iff R is an AM-bisimulation.

We have seen two equivalent definitions of bisimulation. Another way to obtain the notion of bisimilarity
is via the final coalgebra. The final coalgebra has not played an important role in this paper so far. But it
is a powerful device to provide semantic domains for processes as known, for example, from process algebra.
In domain theory the initial algebra has been used more than the final coalgebra, but then in many of the
categories typical in domain theory the famous limit-colimit coincidence [2] means that initial algebras and
final coalgebras agree. It was Aczel’s insight [3] that in categories where this does not happen, as eg in the
category Set, it is the final coalgebra that provides the right semantic domain for recursively defined data
or processes.

Remark 4.7 (Existence of a final coalgebra). It is well known from the proof of the adjoint functor theorem
[37] that the final coalgebra can be computed as a coproduct over all coalgebras quotiented by bisimilarity.
Another description of essentially the same construction is obtained by taking the colimit of the forgetful
functor U : Coalg(T ) −→ Set. In both cases the colimit is taken over a large diagram and therefore does not
need to exist in Coalg(T ). There are two common solutions to this problem.

The first is to require that T is accessible which means that T is determined by its action on sets smaller
than some regular cardinal. For example, the final coalgebra for the powerset functor P does not exist
in Coalg(P) but the final Pω-coalgebra does exists in Coalg(Pω). This remains true if we replace ω by an
inaccessible cardinal, giving us a final coalgebra for the powerset-functor [11].

The second, and equivalent solution, is to enlarge the universe Set to a bigger universe Set′ and extend
T : Set −→ Set to a functor T ′ : Set′ −→ Set′ which does admit a final coalgebra. This universe enlargment
is always possible [30].

Both solutions introduce a distinction between large and small sets and, consequently, between large and
small coalgebras. The coalgebras of interest are the small ones, but the final coalgebra is large. What one
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needs to show then is that the large final coalgebra classifies the bisimilarity of the small coalgebras. In
essence, this means that every element of the final coalgebra lives in a small subcoalgebra. This is indeed
the case and was first shown in [4]. For further developments we refer to [5, 6].

To summarize the remark above, in the following we feel free to use a final coalgebra whenever convenient.

Theorem 4.8 (coinduction theorem). Let T : Set −→ Set preserve weak pullbacks. Let X −→ TX be
a coalgebra and ! the coalgebra morphism from X into the final coalgebra. Then !(x) =!(y) iff there is a
bisimulation R with xRy.

For the proof we refer to Rutten [45] and only say where the weak-pullback preservation comes in. In
order to exhibit the bisimulation required by the ‘if’ direction, one takes as R the kernel of !. Since, by
virtue of being a kernel, R is a pullback, one obtains the required ρ : R −→ TR as the (not necessarily
unique) arrow into the weak pullback TR.

Simulations arise from relation lifting of endofunctors on the category Preord of preorders, or the category
Pos of posets, much in the same way as bisimulations arise from endofunctors on Set. Our main sources
are here the following. Worrell [56], following a suggestion of Rutten [44], subsumes Preord under the more
general V-category case, Hughes and Jacobs [25] present a detailed study dedicated to Preord and Levy [36]
focusses on Pos. Conceptually, the difference between Preord and Pos is that a preordered final coalgebra
allows to account for similarity (via the order) and bisimilarity (via equality) simultaneously, reflecting the
well-known phenomenon that mutual similarity is weaker than bisimilarity. Here, we decided to follow [36]
but concentrate on preorders instead of posets.

The definition of simulation in the new setting is still given by (20), just that now we let T : Preord −→
Preord. Note that below we consider simulations on a coalgebra, that is we let (X, ξ) = (X ′, ξ′) in (20).

For X ∈ Preord we denote by Xo the underlying set and by ≤X the corresponding preorder.

Proposition 4.9. 1. Given a coalgebra X −→ TX, the preorder ≤X is a simulation.

2. The union of simulations is a simulation and for every coalgebra X −→ TX there is a largest simulation
vX .

3. Given a coalgebra X −→ TX the quotient wrt the largest simulation on X exists and is given by
(Xo,vX) −→ T (Xo,vX).

4. If f : X −→ X ′ and g : Y −→ Y ′ are coalgebra morphisms and if R : X ′ ◦ // Y ′ is a simulation,

then g∗ ·R · f∗ : X ◦ // Y is a simulation. Moreover, if R is the largest simulation, so is g∗ ·R · f∗.

Proof. (1) follows from T preserving identities and (2) follows from T preserving inclusion of relations. (3)
requires more work, but follows arguments well-known for coalgebras, see eg [36]. (4) follows from properties
of relation lifting.

Due to item (3) in the proposition above, the final T -coalgebra exists, even though its carrier might
possibly be a proper class, see Remark 4.7.

Theorem 4.10. (coinduction theorem) Let T : Preord −→ Preord. Let X −→ TX be a coalgebra and ! the
coalgebra morphism from X into the final coalgebra Z −→ TZ. Then !(x) ≤Z !(y) iff there is a simulation
R with xRy.

Remark 4.11. It is possible to develop the above for Pos instead of Preord, see [36]. Simulations in the
Preord-sense include bisimulations in the Set-sense. Technically, in our framework, this is shown by Theorem
4.3 of [9] (which holds for Preord for the same reasons as it does hold for Pos): Every Set functor T can be
extended in a canonical way to a Preord-functor T ′ and on discrete coalgebras T -bisimulations coincide with
T ′-simulations. To make the connection with the relators of Section 3.E, we recall that they give rise to
functors Preord −→ Preord. Accordingly we use the monotone relation lifting along Preord −→ Rel(Preord)
to define simulation as in (20).
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Metric simulations arise from the relation lifting of endofunctors on V-categories presented in Section 3.D
and our development, closely following Worrell [56], is now based on relation lifting via cospans.

The definition of simulation in the new setting is still given by (20), just that now we let T : V-cat −→ V-cat
and replace “⊆” by ≤, referring to the order on V. Consequently, relying on the notation of Remark 4.2
(see, in particular, item (3)), R is a simulation iff

R(x, x′) ≤ TR(ξ(x), ξ′(x′))

Proposition 4.12. 1. Given a coalgebra X −→ TX, the X(x, x′) is a simulation.

2. The join of simulations is a simulation and for every coalgebra X −→ TX there is a largest simulation
vX .

3. If T preserves embeddings, then simulations are closed under composition.

4. If f : X −→ X ′ and g : Y −→ Y ′ are coalgebra morphisms and if R : X ′ ◦ // Y ′ is a simulation,

then g∗ ·R · f∗ : X ◦ // Y is a simulation. Moreover, if R is the largest simulation, so is g∗ ·R · f∗.

The next theorem specialises in the case of V = 2 to a theorem on preorders similar to Theorem 4.10
but it is formulated in such a way that it accounts for the possibility of measuring ‘distances’ expressed by
the values in V.

Theorem 4.13. (coinduction theorem) Let T : V-cat −→ V-cat preserve embeddings. Let X −→ TX be a
coalgebra and ! the coalgebra morphism from X into the final coalgebra Z −→ TZ. Then Z(!(x), !(x′)) =∨
{R(x, x′) | R a simulation on X −→ TX}.

4.B. Coalgebraic logic

Given a functor T : Set −→ Set describing the possible one-step behaviours of coalgebras X −→ TX, can
we find modal operators to specify the behaviour of coalgebras?

For overviews summarising and comparing different answers to this question, we refer to [34, 18]. Here,
we want to single out one important approach, due to Moss [41], which is based on the relation lifting and
makes crucial use of the relation lifting preserving composition.

Let us assume we have a set of formulas L and a semantics 
ξ w.r.t. coalgebras ξ : X −→ TX and states x
in X given as a relation


ξ ⊆ X × L

The idea of Moss’s logic is to only use one modal operator, which nowadays is written as ∇ and pronounced
‘nabla’, and which is formed according to

γ ∈ TL
∇γ ∈ L

The semantics of ∇ is obtained by lifting the satisfaction relation 
ξ as follows (writing 
 for 
ξ)

x 
 ∇γ ⇔ ξ(x) T (
) γ. (21)

Example 4.14. Let T = P and Φ ⊆ L a set of formulas. Then x 
 ∇{φ1, . . . φn} iff all successors of x satisfy
some formula φi and all formulas φ1, ..., φn are satisfied by some successor of x. Note the “forall-exists-and-
forall-exists” pattern induced by the relation lifting of the powerset and familiar from Examples 2.8 and
4.3.

One of the basic properties of the logic is invariance under bisimilarity if T preserves weak pullbacks.
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Proposition 4.15. If T preserves weak pullbacks and R : X ′ ◦ // X is a bisimulation between two coal-
gebras X ′ −→ TX ′ and X −→ TX and if 
 ·R ⊆ 
′, then x 
 ∇γ ⇒ x′ 
′ ∇γ.

Proof. The data of the proposition is depicted in

TX ′ ◦
T (R)

// TX ◦
T (
)

// TL

X ′

◦ξ′∗

OO

◦
R // X

◦ξ∗

OO

◦

 // L

(22)

Assuming x 
 ∇γ, that is x (T (
) · ξ∗) γ, we have x′ (T (
) · ξ∗ · R) γ and by R being a bisimulation
x′ (T (
) · T (R) · ξ′∗) γ, holds. Hence, by preservation of weak pullbacks, x′ (T (
 ·R) · ξ′∗) γ, which implies
x′ (T (
′) · ξ′∗) γ, that is x′ 
′ ∇γ.

Monotone coalgebraic logic has been investigated in [14, 15]. The categories Preord and Pos are special
in the sense that monotone relations can both be represented by spans and cospans. We have seen the
treatment via spans in Section 3.C and, by specialising to V = 2, the treatment via cospans in Section 3.D.
In both cases one obtains the same semantics for ∇ and so we proceed immediately to the case of a general
V-cat.

Metric coalgebraic logic follows the same pattern as laid out for Set above, but instantiating the defini-
tions in the setting of Section 3.D gives a much richer structure.

One question that didn’t arise in the discrete setting and that needs attention is what type we want to give
the satisfiability relation. If the order on X should represent information order one would like to have that
interpretations of formulas are upsets ordered by reverse inclusion. It therefore makes sense to stipulate
that satisfaction is given by a relation


 : Xop ◦ // L
Then, in order to match the types correctly in (22), we see that we need to replace T by its dual T ∂

defined by T ∂(X) = (T (Xop))op and X and ξ by Xop and ξop. After this little modification the proof of
Proposition 4.15 goes through again.

Example 4.16. Let TX = UX = [X,V]op, that is, TX is the set of ‘upsets’ of X ordered by reverse
inclusions. Note that T ∂X = DX = [Xop,V].

X

d
  

L

c
��




(T ∂c)∗ · (T ∂d)∗ (ξ(x), α) = [
op,V](D(d)(ξ(x)),D(c)(α))

= [
op,V](ξ(x)), [dop,V] · D(c)(α))

=
∧
y∈ξ(x)(ξ(x)(y)(

∨
φ∈L α(φ) ⊗ 
(y, φ))

= supy∈ξ(x) ( infφ∈L ( α(φ) + y 
 φ )− ξ(x)(y) )

where( is the implication (closed structure) corresponding to ⊗. As a side remark, we would like to point
out that this calculation, which is specific to the particular functor T , is algebraic in the sense that it can be
performed by manipulating a precise set of rules. Coming back to evaluating the result of the calculation,
we find a semantics for ∇ that resembles the � operator of modal logic, but is much richer. To see that �
is indeed a special case, let α = {φ} and let φ be crisp (taking values in {0,∞}) and X be discrete. Then

(T ∂c)∗ · (T ∂d)∗ (ξ(x), α) = ∀y ∈ ξ(x) . y 
 φ

that is ∇ = �.
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Dually, starting with T = D, one obtains a generalisation of the diamond operator from modal logic. It
is quite pleasant to see that this relationship between U/� and D/♦ well-known in domain theory [54] arises
here from the general machinery in the case of V = 2 and is appropriately generalised for more general V.

5. Conclusions

To summarize, we have seen how to lift relations to a large number of data types. In case these data types
are polynomial (that is, built from (co)products of sets) this is straightforward, but for other datatypes
such as powerdomains or probability distributions, interesting notions of bisimulation arise. Furthermore,
ordered and metric versions of these notions are obtained by moving from sets to orders or to V-categories.

From placing this survey in the context of RAMICS, a number of questions arise.

For example, Chapter 7 of Schmidt [47] shares with the category theoretic approach the emphasis on type
constructors (such as product, coproduct, powerset, etc), as well as the insistence on modularity for building
complex data types and for proving properties about them. But the methods are different, relation algebraic
on the one hand, on the other functoriality, naturality and universal properties. While [47] points out
that categorical constructions may not be constructive, in practice, as in this paper, they often are. A
deeper comparison of the different schools of thought and their respective advantages could be a worthwhile
endeavour.

Apart from developing the theory uniformly in the type functor, there might also something to be gained
from looking at the work on many-valued relation algebra, see eg [28, 42, 55], from the point of view of
enriched category theory where not only the relations are fuzzy but also the sets may carry an order or
metric that has to be respected by the relations.

For example, what is the relation algebra of monotone relations? It will be different from allegories [19],
as Preord and Pos are not regular categories. A more concrete observation here is that complement and
converse have different types in the ordered setting. Indeed, given R : A ◦ // B , the converse RT is of type

Bop ◦ // Aop and the complement R is of type Aop ◦ // Bop , so that expressions such as R;RT and
many relation-algebraic laws (including the modularity law [19] of allegories) are not type correct anymore.
Nevertheless, the Schröder equivalences4, see eg [48, 2.3.4], still work, showing that complement and converse
could still play a role.

Finally, in a wider sense, what we presented here can be seen as part of the larger topic of Reynolds’
parametricity [24]. The reason that the work on parametricity has a quite different technical flavour than
the work reviewed in this paper is the following. Most work in coalgebra has focussed on covariant datatypes
(including all datatypes seen in this paper), because they can be modelled in standard categories such as
sets, orders, vector spaces, etc. But for work in parametricity the mixed-variant datatype of function spaces
X 7→ XX is of central importance, requiring the more sophisticated categories of domain theory. This
suggests that there is more to gain from weaving these two strands of research together.
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