
Multi-type Display Calculus for Dynamic
Epistemic Logic

Sabine Frittella* Giuseppe Greco† Alexander Kurz‡

Alessandra Palmigiano§ Vlasta Sikimić¶

Abstract

In the present paper, we introduce a multi-type display calculus for dy-
namic epistemic logic, which we refer to as Dynamic Calculus. The display-
approach is suitable to modularly chart the space of dynamic epistemic logics
on weaker-than-classical propositional base. The presence of types endows
the language of the Dynamic Calculus with additional expressivity, allows
for a smooth proof-theoretic treatment, and paves the way towards a gen-
eral methodology for the design of proof systems for the generality of dy-
namic logics, and certainly beyond dynamic epistemic logic. We prove that
the Dynamic Calculus adequately captures Baltag-Moss-Solecki’s dynamic
epistemic logic, and enjoys Belnap-style cut elimination.
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1 Introduction

Motivation. The range of nonclassical logics has been rapidly expanding, driven
by influences from other fields which have opened up new opportunities for ap-
plications. The logical formalisms which have been developed as a result of this
interaction have attracted the interest of a research community wider than the lo-
gicians, and their theory has been intensively investigated, especially w.r.t. their
semantics and computational complexity.

However, most of these logics lack a comparable proof-theoretic development.
More often than not, the hurdles preventing a standard proof-theoretic development
for these logics are due precisely to the very features which make them suitable
for applications, such as e.g. their not being closed under uniform substitution, or
the existence of certain interactions between logical connectives, which cannot be
expressed within the language itself.

A case in point is Baltag-Moss-Solecki’s logic of epistemic actions and knowl-
edge (EAK), which is the main focus of the present paper. The Hilbert-style pre-
sentation of EAK prominently features non schematic axioms such as

[α]p↔ (Pre(α)→ p),
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where the variable p ranges over atomic propositions, and Pre(α) is a meta-linguistic
abbreviation for an arbitrary formula, and axioms such as

[α][a]A↔ (Pre(α)→
∧
{[a][β]A | αaβ}),

in which the extra-linguistic label αaβ expresses the fact that actions α and β are
indistinguishable for agent a.

Difficulties posed by features such as these caused the existing proposals of
calculi in the literature to be often ad hoc, not easily generalizable e.g. to other log-
ics, and more in general lacking a smooth proof-theoretic behaviour. In particular,
the difficulty in smoothly transferring results from one logic to another is a prob-
lem in itself, since logics such as EAK typically come in large families. Hence,
proof-theoretic approaches which uniformly apply to each logic in a given family
are in high demand (for an expanded discussion of the existing proof systems for
dynamic epistemic logics, see [15, Section 3]).

The problem of the transfer of results, tools and methodologies has been ad-
dressed in the proof-theoretic literature for the families of substructural and modal
logics, and has given rise to the development of several generalizations of Gentzen
sequent calculi (such as hyper-, higher level-, display- or labelled-sequent calculi).

Contribution. The present paper focuses on the core technical aspects of a proof-
theoretic methodology and set-up closely linked to Belnap’s display calculi [3].
Specifically, our main contribution is the introduction of a methodology for the de-
sign of display calculi based on multi-type languages. In the case study provided by
EAK, we start by observing that having to resort to the label αaβ is symptomatic of
the fact that the language of EAK lacks the necessary expressivity to autonomously
capture the piece of information encoded in the label.

In order to provide the desired additional expressivity, we introduce a language
in which not only formulas are generated from formulas and actions (as it happens
in the symbol 〈α〉A) and formulas are generated from formulas and agents (as it
happens in the symbol 〈a〉A), but also actions are generated from the interaction
between agents and actions, which is precisely what the label αaβ is about.

In the multi-type language for EAK introduced in the present paper, each gen-
eration step mentioned above is explicitly accounted for via special connectives
taking arguments of different types. In principle, more than one alternative is pos-
sible in this respect; our choice for the present setting consists of the following
types: Ag for agents, Fnc for functional actions, Act for actions, and Fm for for-
mulas. Hence, the present setting introduces a separation between functional, i.e.
deterministic actions, of type Fnc, and possibly nondeterministic actions, of type
Act (see discussion at the end of section 4).

The proposed calculus provides an interesting and in our opinion very promis-
ing methodological platform towards the uniform development of a general proof-
theoretic account of all dynamic logics, and also, from a purely structurally proof-
theoretic viewpoint, for clarifying and sharpening the formulation of criteria lead-

3



ing to the statement and proof of meta-theoretic results such as Belnap-style cut-
elimination (see Section 8).

Structure of the paper. In Section 2, we collect the relevant preliminaries on
EAK, display calculi, and the (single-type) display calculus D’.EAK. In Section
3.1, we sketch the general features of the environment of multi-type display calculi,
extend Wansing’s definition of properly displayable calculi to the multi-type set-
ting, and prove the corresponding extension of Belnap’s cut elimination metatheo-
rem. In Section 4, we propose a novel display calculus for EAK, which we refer to
as Dynamic Calculus, and which concretely exemplifies the notion of multi-type
display calculus. In Sections 5-7, we prove that the Dynamic Calculus adequately
captures EAK, and enjoys Belnap-style cut elimination. In Section 8, we collect
some conclusions and indicate further directions. The routine proofs and deriva-
tions are collected in Section 9, the appendix.

2 Preliminaries

In the present section, we collect the needed preliminaries: in 2.1, we review the
logic of epistemic actions and knowledge. Our presentation slightly departs from
[2], and closely follows [20, 18].1 In 2.2, we briefly review the intuitionistic version
of EAK, the axiomatization of which is directly captured in the rules of the calculus
introduced in Section 4. In 2.3, we sketch the main relevant features of display
calculi. In 2.4, we briefly report on the (single-type) display calculus for EAK
introduced in [15].

2.1 The logic of epistemic actions and knowledge

The logic of epistemic actions and knowledge (further on EAK) is a logical frame-
work which combines a multi-modal classical logic with a dynamic-type propo-
sitional logic. Static modalities in EAK are parametrized with agents, and their
intended interpretation is epistemic, that is, 〈a〉A intuitively stands for ‘agent a
thinks that A might be the case’. Dynamic modalities in EAK are parametrized
with epistemic action-structures (defined below) and their intended interpretation
is analogous to that of dynamic modalities in e.g. Propositional Dynamic Logic.
That is, 〈α〉A intuitively stands for ‘the action α is executable, and after its execu-
tion A is the case’. Informally, action structures loosely resemble Kripke models,
and encode information about epistemic actions such as e.g. public announcements,
private announcements to a group of agents, with or without (actual or suspected)
wiretapping, etc. Action structures consist of a finite nonempty domain of action-
states, a designated state, binary relations on the domain for each agent, and a

1The account of EAK developed in [20, 18] is specifically tailored to facilitate the dual charac-
terization at the base of the definition of the intuitionistic counterparts of EAK, which the calculus
introduced in Section 4 takes as basic. So for the sake of a tighter presentation we include it here.
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precondition map. Each state in the domain of an action structure α represents
the possible appearance of the epistemic action encoded by α. The designated
state represents the action actually taking place. Each binary relation of an action
structure represents the type, or degree, of uncertainty entertained by the agent as-
sociated with the given binary relation about the action taking place; for instance,
the agents’ knowledge, ignorance, suspicions. Finally, the precondition function
maps each state in the domain to a formula, which is intended to describe the state
of affairs under which it is possible to execute the (appearing) action encoded by
the given state. This formula encodes the preconditions of the action-state. The
reader is referred to [2] for further intuition and concrete examples.

Let AtProp be a countable set of atomic propositions, and Ag be a nonempty
set (of agents). The set L of formulas A of the logic of epistemic actions and
knowledge (EAK), and the set Act(L) of the action structures α over L are defined
simultaneously as follows:

A := p ∈ AtProp | ¬A | A ∨ A | 〈a〉A | 〈α〉A (α ∈ Act(L), a ∈ Ag),

where an action structure over L is a tuple α = (K, k, (αa)a∈Ag, Preα), such that K
is a finite nonempty set, k ∈ K, αa ⊆ K × K and Preα : K → L.

The symbol Pre(α) stands for Preα(k). For each action structure α and every i ∈
K, let αi := (K, i, (αa)a∈Ag, Preα). Intuitively, the family of action structures {αi |

kαai} encodes the uncertainty of agent a about the action α = αk that is actually
taking place. Perhaps the best known epistemic actions are public announcements,
formalized as action structures α such that K = {k}, and αa = {(k, k)} for all a ∈
Ag. The logic of public announcements (PAL) [22] can then be subsumed as the
fragment of EAK restricted to action structures of the form described above. The
connectives >, ⊥, ∧,→ and↔ are defined as usual.

Standard models for EAK are relational structures M = (W, (Ra)a∈Ag,V) such
that W is a nonempty set, Ra ⊆ W ×W for each a ∈ Ag, and V : AtProp → P(W).
The interpretation of the static fragment of the language is standard. For every
Kripke frame F = (W, (Ra)a∈Ag) and each action structure α, let the Kripke frame∐

α F := (
∐

K W, ((R × α)a)a∈Ag) be defined as follows:
∐

K W is the |K|-fold
coproduct of W (which is set-isomorphic to W × K), and (R × α)a is a binary
relation on

∐
K W defined as

(w, i)(R × α)a(u, j) iff wRau and iαa j.

For every model M and each action structure α, let∐
α

M := (
∐
α

F ,
∐

K

V)

be such that
∐

α F is defined as above, and (
∐

K V)(p) :=
∐

K V(p) for every p ∈
AtProp. Finally, let the update of M with the action structure α be the submodel
Mα := (Wα, (Rαa)a∈Ag,Vα) of

∐
α M the domain of which is the subset

Wα := {(w, j) ∈
∐

K

W | M,w  Preα( j)}.
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Given this preliminary definition, formulas of the form 〈α〉A are interpreted as
follows:

M,w  〈α〉A iff M,w  Preα(k) and Mα, (w, k)  A.

The model Mα is intended to encode the (factual and epistemic) state of affairs
after the execution of the action α. Summing up, the construction of Mα is done
in two stages: in the first stage, as many copies of the original model M are taken
as there are ‘epistemic potential appearances’ of the given action (encoded by the
action states in the domain of α); in the second stage, states in the copies are
removed if their associated original state does not satisfy the preconditions of their
paired action-state.

A complete axiomatization of EAK consists of copies of the axioms and rules
of the minimal normal modal logic K for each modal operator, either epistemic or
dynamic, plus the following (interaction) axioms:

〈α〉p ↔ (Pre(α) ∧ p);(2.1)

〈α〉¬A ↔ (Pre(α) ∧ ¬〈α〉A);(2.2)

〈α〉(A ∨ B) ↔ (〈α〉A ∨ 〈α〉B);(2.3)

〈α〉〈a〉A ↔ (Pre(α) ∧
∨
{〈a〉〈αi〉A | kαai}).(2.4)

The interaction axioms above can be understood as attempts at defining the
meaning of any given dynamic modality 〈α〉 in terms of its interaction with the
other connectives. In particular, while axioms (2.2) and (2.3) occur also in other
dynamic logics such as PDL, axioms (2.1) and (2.4) capture the specific behaviour
of epistemic actions. Specifically, axiom (2.1) encodes the fact that epistemic ac-
tions do not change the factual state of affairs, and axiom (2.4) plausibly rephrases
the fact that ‘after the execution of α, agent a thinks that A might be the case’
in terms of ‘there being some epistemic appearance of α to a such that a thinks
that, after its execution, A is the case’. An interesting aspect of these axioms is
that they work as rewriting rules which can be iteratively used to transform any
EAK-formula into an equivalent one free of dynamic modalities. Hence, the com-
pleteness of EAK follows from the completeness of its static fragment, and EAK is
not more expressive than its static fragment. However, and interestingly, there is an
exponential gap in succinctness between equivalent formulas in the two languages
[19].

Action structures are one among many possible ways to represent actions. Fol-
lowing [17], we prefer to keep a black-box perspective on actions, and to identify
agents a with the indistinguishability relation they induce on actions; so, in the
remainder of the article, the role of the action-structures αi for kαi will be played
by actions β such that αaβ, allowing us to reformulate (2.4) as

〈α〉〈a〉A ↔ (Pre(α) ∧
∨
{〈a〉〈β〉A | αaβ}).
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Axioms
A→ (B→ A)
(A→ (B→ C))→ ((A→ B)→ (A→ C))
A→ (B→ A ∧ B)
A ∧ B→ A
A ∧ B→ B
A→ A ∨ B
B→ A ∨ B
(A→ C)→ ((B→ C)→ (A ∨ B→ C))
⊥ → A

[a](A→ B)→ ([a]A→ [a]B)
〈a〉(A ∨ B)→ 〈a〉A ∨ 〈a〉B
¬〈a〉⊥

FS1 〈a〉(A→ B)→ ([a]A→ 〈a〉B)
FS2 (〈a〉A→ [a]B)→ [a](A→ B)

Inference Rules
MP if ` A→ B and ` A, then ` B
Nec if ` A, then ` [a]A

Table 1: Axioms and rules of the intuitionistic modal logic m-IK

2.2 Intuitionistic EAK

The (single-agent version of the) intuitionistic logic of epistemic actions and knowl-
edge (IEAK) has been introduced in [18]. In the present subsection we report on
its multi-agent version. The reason for mentioning this logic in the preliminaries is
that the calculus introduced in Section 4 takes the Hilbert-style axiomatization of
IEAK—rather than that of its Boolean counterpart—as basic, and many of its rules
are motivated by axioms which define the intuitionistic setting (see Section 4 for
further details on this topic).2.

Let AtProp be a countable set of atomic propositions, and let Ag be a nonempty
set (of agents). The set L(m-IK) of the formulas A of the multi-modal version m-
IK of Fischer Servi intuitionistic modal logic IK (cf. [26]) are inductively defined
as follows:

A := p ∈ AtProp | ⊥ | A ∨ A | A ∧ A | A→ A | 〈a〉A | [a]A (a ∈ Ag)

Let ¬A abbreviate as usual A → ⊥. The Hilbert-style presentation of m-IK is
reported in Table 1.

2The Boolean setting is captured by adding the so-called Grishin rules (see page 26) to the basic
framework.

7



Interaction Axioms
〈α〉p↔ Pre(α) ∧ p
[α]p↔ Pre(α)→ p
〈α〉⊥ ↔ ⊥

〈α〉> ↔ Pre(α)
[α]> ↔ >
[α]⊥ ↔ ¬Pre(α)
[α](A ∧ B)↔ [α]A ∧ [α]B
〈α〉(A ∧ B)↔ 〈α〉A ∧ 〈α〉B
〈α〉(A ∨ B)↔ 〈α〉A ∨ 〈α〉B
[α](A ∨ B)↔ Pre(α)→ (〈α〉A ∨ 〈α〉B)
〈α〉(A→ B)↔ Pre(α) ∧ (〈α〉A→ 〈α〉B)
[α](A→ B)↔ 〈α〉A→ 〈α〉B
〈α〉〈a〉A↔ Pre(α) ∧

∨
{〈a〉〈β〉A | αaβ}

[α]〈a〉A↔ Pre(α)→
∨
{〈a〉〈β〉A | αaβ}

[α][a]A↔ Pre(α)→
∧
{[a][β]A | αaβ}

〈α〉[a]A↔ Pre(α) ∧
∧
{[a][β]A | αaβ}

Inference Rules
vNec if ` A, then ` [α]A

Table 2: Axioms and rules of the intuitionistic epistemic logic IEAK

To define the language of IEAK, let AtProp be a countable set of atomic propo-
sitions, and let Ag be a nonempty set. The set L(IEAK) of formulas A of the intu-
itionistic logic of epistemic actions and knowledge (IEAK), and the set Act(L) of
the action structures α over L are defined simultaneously as follows:

A := p ∈ AtProp | ⊥ | A→ A | A ∨ A | A ∧ A | 〈a〉A | [a]A | 〈α〉A | [α]A,

where a ∈ Ag, and an action structure α over L(IEAK) is defined in a completely
analogous way as action structures in the classical case, the only difference lying
in the codomain of Preα. Then, the logic IEAK is defined in a Hilbert-style pre-
sentation which includes the axioms and rules of m-IK plus the axioms and rules
in Table 2.

2.3 Display calculi

The first display calculus appears in Belnap’s paper [3], as a sequent system aug-
menting and refining Gentzen’s basic design of sequent calculi, which admit two
types of rules: the structural, and the operational. Belnap’s refinement is based
on the introduction of a special syntax for the constituents of each sequent, which
includes structural connectives along with logical, or operational connectives. For
an expanded discussion of these ideas, the reader is referred to [15, 28, 25].
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Structures and display property. Structures are built up much in the same way
as formulas, taking formulas as atomic components, and applying structural con-
nectives (which are typically 0-ary, unary and binary) so that each structure can be
uniquely associated with and identified by its generation tree. Every node of such
a generation tree defines a substructure of the given structure.

Definition 1. (cf. [3, Section 3.2]) A proof system enjoys the full display property
iff for every sequent X ` Y and every substructure Z of either X or Y , the sequent
X ` Y can be transformed, using the rules of the system, into a logically equivalent
sequent which is either of the form Z ` W or of the form W ` Z, for some structure
W. In the first case, Z is displayed in precedent position, and in the second case, Z
is displayed in succedent position. The rules enabling this equivalent rewriting are
called display postulates.

In what follows, we will sometimes write e.g. (X ` Y)[Z]pre (resp. (X `

Y)[Z]suc) to indicate that Z occurs as a substructure in precedent (resp. succedent)
position within the sequent X ` Y . Thanks to the fact that the display postulates are
based on adjunction and residuation, it can be proved that exactly one of the two
alternatives mentioned in the definition above occurs. In other words, in a system
enjoying the display property, any substructure of any sequent X ` Y is always
displayed either only in precedent position or only in succedent position. This is
why we can talk about occurrences of substructures in precedent or in succedent
position, even if they are nested deep within a given sequent.

Uniform strategy for cut-elimination. In [3], a meta-theorem is proven, which
gives sufficient conditions in order for a sequent calculus to enjoy cut elimina-
tion. This meta-theorem captures the essentials of the cut-elimination procedure
Gentzen-style, and is the main technical motivation for the design of Display Logic.
Belnap’s meta-theorem gives a set of eight conditions on sequent calculi, most of
which are verified by inspection on the shape of the rules. Together, these condi-
tions guarantee that the cut rule is eliminable in the given sequent calculus, and
that the system enjoys the subformula property. When Belnap’s meta-theorem can
be applied, it provides a much smoother and more modular route to cut elimination
than the Gentzen-style proofs. Belnap’s original meta-theorem has been gener-
alized and refined by various authors (cf. [23, 25, 28]). Particularly relevant to
us is the notion of properly displayable calculus, introduced in [28, Section 4.1],
a generalization of which has been proposed in [15], which in its turn is further
generalized in Section 3.2.

Relativized display property. The full display property is a key ingredient in
the proof of the cut-elimination metatheorem. For instance, it enables a system
enjoying it to meet Belnap’s condition C8 for the cut-elimination metatheorem.
However, it turns out that an analogously good behaviour can be guaranteed of any
sequent calculus enjoying the following weaker property:
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Definition 2. A proof system enjoys the relativized display property iff for every
derivable sequent X ` Y and every substructure Z of either X or Y , the sequent
X ` Y can be transformed, using the rules of the system, into a logically equivalent
sequent which is either of the form Z ` W or of the form W ` Z, for some structure
W.

The calculus defined in Section 4 does not enjoy the full display property, but
does enjoy the relativized display property above (more about this in Sections 4 and
7), which enables it to verify the condition C’8 (see Section 3.2). More details about
it are collected in Section 9.1. Finally, notice that the definition of substructures in
precedent or succedent position within each sequent can be given in a way which
does not rely on the full display property. It is enough to rely on the polarity of
the coordinates of each structural connective: if these polarities are assigned, then
for any sequent X ` Y , if Z is a substructure of X, then Z is in precedent (resp.
succedent) position if, in the generation tree of X, the path from Z to the root goes
through an even (resp. odd) number of coordinates with negative polarity. If Z
is a substructure of Y , then Z is in succedent (resp. precedent) position if, in the
generation tree of Y , the path from Z to the root goes through an even (resp. odd)
number of coordinates with negative polarity.

2.4 A single-type display calculus for EAK

In [15], a display calculus is introduced for EAK, which is shown to be sound
w.r.t. the final coalgebra semantics, syntactically complete w.r.t. EAK and to enjoy
cut-elimination Belnap-style. In the present subsection we briefly report on it, not
only for the sake of providing a relevant example of display calculus, but above
all because a translation can be established between the operational language of
D’.EAK and of the Dynamic Calculus (cf. Section 4). This translation is important
for the further treatment of Sections 5 and 7.

The structural and operational languages of D’.EAK are expansions of the stan-
dard structural and operational propositional languages with the following (struc-
tural and operational) modal operators, indexed by agents a and actions α, and
(structural and operational) constant symbols:

Structural symbols {a} {a

}

{α} {α

}

Φα

Operational symbols 〈a〉 [a] ( 〈a

〉 ) ( [a

] ) 〈α〉 [α] 〈α

〉

[α

] 1α

The structural connectives {α} and {α

} correspond to diamond-type modalities when
occurring in precedent position, and to box-type modalities when occurring in
succedent position. The structural and operational constants Φα and 1α are used to
capture the proof-theoretic behaviour of the metalinguistic abbreviation Pre(α) at
the object-level. In the rules below, the structural connective Φα can occur only in
precedent position. Hence, the structural constant symbol Φα can never be inter-
preted as anything else than 1α. However, a natural way to extend D’.EAK would

10



be to introduce an operational constant symbol 0α, intuitively standing for the post-
conditions of α for each action α, and dualize the relevant rules so as to capture the
behaviour of postconditions.

The connectives 〈α

〉 and [α

] occur within brackets since they are not actually
part of the logical language of D’.EAK, but point at the fact that the structural
connective {α

} is interpreted in the final coalgebra as the diamond (resp. box) asso-
ciated with the converse of the relation associated with the epistemic action α (for
an expanded discussion on this, the reader is referred to [15, Section 5.2]). The key
aspect of the final coalgebra as a semantic environment for EAK is that it makes
it possible to see the dynamic connectives [α] and 〈α〉 as parts of adjoint pairs,
precisely involving the additional modalities 〈α

〉 and [α

] . Specifically, we have the
following (syntactic) adjunction relations 〈α〉 a [α

] and 〈α

〉

a [α]: for all formulas
A, B,

〈α〉A ` B iff A ` [α

] B 〈α
〉 A ` B iff A ` [α]B(2.5)

The reader is referred to [15, Section 5] for a detailed discussion. The two tables
below introduce the structural rules for the dynamic modalities which have the
same shape as those for the agent-indexed modalities, here omitted.

Structural Rules
I ` X

necdyn
L {α} I ` X

X ` I
necdyn

RX ` {α} I

I ` XdynnecL

{α

} I ` X
X ` I dynnecRX ` {α

} I

{α}Y > {α}Z ` X
FS dyn

L {α}(Y > Z) ` X
Y ` {α}X > {α}Z

FS dyn
RY ` {α}(X > Z)

{α}X ; {α}Y ` Z
mondyn

L {α}(X ; Y) ` Z
Z ` {α}Y ; {α}X

mondyn
RZ ` {α}(Y ; X)

{α

} Y > {α

} X ` Z
dynFS L

{α

} (Y > X) ` Z

Y ` {α

} X > {α

} Z
dynFS RY ` {α

} (X > Z)

{α

} X ; {α

} Y ` Z
dynmonL

{α

} (X ; Y) ` Z

Z ` {α

} Y ; {α

} X
dynmonRZ ` {α

} (Y ; X)

{a}(X ; {a

} Y) ` Z
con j

{a}X ; Y ` Z

X ` {a}(Y ; {a

} Z)
con j

X ` {a}Y ; Z

{a

} (X ; {a}Y) ` Z
con j

{a

} X ; Y ` Z

X ` {a

} (Y ; {a}Z)
con j

X ` {a

} Y ; Z

The con j-rules and the FS -rules can be shown to be interderivable thanks to the
following display postulates.

Display Postulates

{α}X ` Y
({α}, {α

} )
X ` {α

} Y

Y ` {α}X
( {α

} , {α})

{α

} Y ` X

11



The display postulates above are direct translations of the adjunction relations
(2.5). Next, we report on the structural rules which are to capture the specific
behaviour of epistemic actions:

Atom
atom

Γp ` ∆p

where Γ and ∆ are arbitrary finite sequences of the form (α1) . . . (αn) (possibly
of different length), such that each (α j) is of the form {α j} or of the form

{

αj

}

, for
1 ≤ j ≤ n. Intuitively, the atom rules capture the requirement that epistemic actions
do not change the factual state of affairs (in the Hilbert-style presentation of EAK,
this is encoded in the axiom (2.1) in Section 2.1).

Structural Rules for Epistemic Actions
X ` Y

balance
{α}X ` {α}Y

{α} {α

} X ` Y
compαL Φα; X ` Y

X ` {α} {α

} Y
compαRX ` Φα > Y

Φα; {α}X ` Y
reduceL

{α}X ` Y
Y ` Φα > {α}X reduceRY ` {α}X

{α}{a}X ` Y
swap-inL

Φα; {a}{β}αaβ X ` Y
Y ` {α}{a}X

swap-inRY ` Φα > {a}{β}αaβ X(
{a}{β} X ` Y | αaβ

)
swap-outL

{α}{a}X ` ;(
Y | αaβ

)
(
Y ` {a}{β} X | αaβ

)
swap-outR;(

Y | αaβ
)
` {α}{a}X

The swap-in rules are unary and should be read as follows: if the premise holds,
then the conclusion holds relative to any action β such that αaβ. The swap-out
rules do not have a fixed arity; they have as many premises3 as there are actions
β such that αaβ. In their conclusion, the symbol ;

(
Y | αaβ

)
refers to a string

(· · · (Y ; Y) ; · · · ; Y) with n occurrences of Y , where n = |{β | αaβ}|. The swap-in and
swap-out rules encode the interaction between dynamic and epistemic modalities
as it is captured by the interaction axioms in the Hilbert style presentation of EAK
(cf. (2.4) in Section 2.1 and similarly in Section 2.2). The reduce rules encode
well-known EAK validities such as 〈α〉A→ (Pre(α) ∧ 〈α〉A).
Finally, the operational rules for 〈α〉, [α], and 1α are reported below:

3The swap-out rule could indeed be infinitary if action structures were allowed to be infinite,
which in the present setting, as in [2], is not the case.
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Operational Rules

{α}A ` X
〈α〉L

〈α〉A ` X
X ` A

〈α〉R
{α}X ` 〈α〉A

A ` X[α]L [α]A ` {α}X
X ` {α}A

[α]RX ` [α]A

Φα ` X
1αL 1α ` X

1αR
Φα ` 1α

3 Multi-type calculi, and cut elimination metatheorem

The present section is aimed at introducing the environment of multi-type display
calculi. Our treatment will be very general, and in particular, no signature will be
specified. However, the calculus introduced in Section 4 is a concrete instantiation
of this abstract description.

3.1 Multi-type calculi

Our starting point is a propositional language, the terms of which form n pair-
wise disjoint types T1 . . .Tn, each of which with its own signature. We will use
a, b, c and x, y, z to respectively denote operational and structural terms of unspeci-
fied (possibly different) type. Further, we assume that operational connectives and
structural connectives are given both within each type and also between different
types, so that the display property holds.

In the applications we have in mind, the need will arise to support types that
are semantically ordered by inclusion. For example, in Section 4 we will introduce,
beside the type Fm of formulas, two types Fnc and Act of functional and general
actions, respectively. The need for enforcing the distinction between functional and
general actions in the specific situation of Section 4 arises because of the presence
of the rule balance (see page 30 for more details on this topic). The semantic point
of view suggests to treat Fnc as a proper subset of Act, but our syntactic stipula-
tions, although will be sound w.r.t. this state of affairs, will be tuned for the more
general situation in which the sets Fnc and Act are disjoint. This is convenient as
each term can be assigned a unique type unambiguously. This is a crucial require-
ment for the Belnap-style cut elimination theorem of the next section, and will be
explicitly stated in condition C’2 below.

Definition 3.1. A sequent x ` y is type-uniform if x and y are of the same type T.
In this case, we will say that x ` y is of type T.

A fundamental and very natural desideratum for rules in a multi-type display
calculus is that they preserve type-uniformity, that is, each rule should be such that
if all the premises are type uniform, then the conclusion is type uniform. As we
will see, all rules in the multi-type calculus introduced in Section 4 preserve type
uniformity.

Finally, in a display calculus, the cut rule is typically of the following form:

13



X ` A A ` Y CutX ` Y

where X,Y are structures and A is a formula. This translates straightforwardly to
the multi-type environment, by the stipulation that cut rules of the form

x ` a a ` y
Cutx ` y

are allowed in the given multi-type system for each type. These cut rules will be
asked to satisfy the following additional requirement:

Definition 3.2. A rule is strongly type-uniform if its premises and conclusion are
of the same type.

3.2 Quasi-properly displayable multi-type calculi

In [15], to show that Belnap-style cut elimination holds for the display calculus
D’.EAK, the definition of quasi-properly displayable calculi is given (generaliz-
ing Wansing’s definition of properly displayable calculi [28, Section 4.2]), and its
corresponding Belnap style meta-theorem is discussed. We are working towards
the proof that the multi-type display calculus introduced in Section 4 enjoys cut
elimination Belnap-style. The aim of the present subsection is then to extend the
notion of quasi-properly displayable calculi to the multi-type environment. Let a
quasi-properly displayable multi-type calculus be any displaycalculus in a multi-
type language satisfying the following list of conditions4:

C1: Preservation of operational terms. Each operational term occurring in a
premise of an inference rule inf is a subterm of some operational term in the con-
clusion of inf.

C2: Shape-alikeness of parameters. Congruent parameters5 are occurrences of
the same structure.

C’2: Type-alikeness of parameters. Congruent parameters have exactly the
same type. This condition bans the possibility that a parameter changes type along
its history.

4See [15] for a discussion on C’5 and C”5.
5The congruence relation is an equivalence relation which is meant to identify the different oc-

currences of the same formula or substructure along the branches of a derivation [3, section 4], [25,
Definition 6.5]. Condition C2 can be understood as a condition on the design of the rules of the
system if the congruence relation is understood as part of the specification of each given rule; that is,
each rule of the system should come with an explicit specification of which elements are congruent
to which (and then the congruence relation is defined as the reflexive and transitive closure of the
resulting relation). In this respect, C2 is nothing but a sanity check, requiring that the congruence is
defined in such a way that indeed identifies the occurrences which are intuitively “the same”.
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C’3: Restricted non-proliferation of parameters. Each parameter in an infer-
ence rule inf is congruent to at most one constituent in the conclusion of inf. This
restriction does not need to apply to parameters of any type T such that the only
applications of cut with cut terms of type T are of the following shapes:

...
X ` a a ` a

X ` a
a ` a

...
a ` Y

a ` Y

C4: Position-alikeness of parameters. Congruent parameters are either all an-
tecedent or all succedent parts of their respective sequents.

C’5: Quasi-display of principal constituents. If an operational term a is prin-
cipal in the conclusion sequent s of a derivation π, then a is in display, unless π
consists only of its conclusion sequent s (i.e. s is an axiom).

C”5: Display-invariance of axioms. If a display rule can be applied to an axiom
s, the result of that rule application is again an axiom.

C’6: Closure under substitution for succedent parts within each type. Each
rule is closed under simultaneous substitution of arbitrary structures for congruent
operational terms occurring in succedent position, within each type.

C’7: Closure under substitution for precedent parts within each type. Each
rule is closed under simultaneous substitution of arbitrary structures for congruent
operational terms occurring in precedent position, within each type.

Condition C6 (and likewise C’7) ensures, for instance, that if the following
inference is an application of the rule R:

(x ` y)
(
[a]suc

i | i ∈ I
)

R(x′ ` y′)[a]suc

and
(
[a]suc

i | i ∈ I
)

represents all and only the occurrences of the operational term a
in the premiss which are congruent to the occurrence of a in the conclusion6, then
also the following inference is an application of the same rule R:

(x ` y)
(
[z/a]suc

i | i ∈ I
)

R(x′ ` y′)[z/a]suc

where the structure z is substituted for a, and z and a have the same type.

6Clearly, if I = ∅, then the occurrence of a in the conclusion is congruent to itself.
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C’8: Eliminability of matching principal constituents. This condition requests
a standard Gentzen-style checking, which is now limited to the case in which both
cut formulas are principal, and hence each of them has been introduced with the
last rule application of each corresponding subdeduction. In this case, analogously
to the proof Gentzen-style, condition C’8 requires being able to transform the given
deduction into a deduction with the same conclusion in which either the cut is
eliminated altogether, or is transformed in one or more applications of the cut rule,
involving proper subterms of the original operational cut-term. In addition to this,
specific to the multi-type setting is the requirement that the new application(s) of
the cut rule be also strongly type-uniform (cf. condition C10 below).

C”8: Closure of axioms under cut. If x ` a and a ` y are axioms, then x ` y is
again an axiom.

C9: Type-uniformity of derivable sequents. Each derivable sequent is type-
uniform.

C10: Strong type-uniformity of cut rules. All cut rules are strongly type-uniform
(cf. Definition 3.2).

3.3 Belnap-style metatheorem for multi-types

In the present subsection, we state and prove the Belnap-style metatheorem which
we will appeal to when establishing the cut elimination Belnap-style for the calcu-
lus we will introduce in the next section.

Theorem 3.3. Any multi-type display calculus satisfying C2, C’2, C’3, C4, C’5,
C”5, C’6, C’7, C’8, C”8, C9 and C10 is cut-admissible. If also C1 is satisfied, then
the calculus enjoys the subformula property.

Proof. This is a generalization of the proof in [29, Section 3.3, Appendix A]. For
the sake of conciseness, we will expand only on the parts of the proof which depart
from that treatment. As usual, the proof is done by induction on the ordered pair of
parameters given by the complexity of the cut term and the height of the cut. Our
original derivation is

... π1
x ` a

... π2
a ` y

x ` y

Principal stage: both cut formulas are principal. There are three subcases.
If the end sequent x ` y is identical to the conclusion of π1 (resp. π2), then we

can eliminate the cut simply replacing the derivation above with π1 (resp. π2).

16



If the premises x ` a and a ` y are axioms, then, by C”8, the conclusion x ` y
is an axiom, therefore the cut can be eliminated by simply replacing the original
derivation with x ` y.

If one of the two premises of the cut in the original derivation is not an axiom,
then, by C’8, there is a proof of x ` y which uses the same premise(s) of the original
derivation and which involves only strongly uniform cuts on proper subterms of a.

Parametric stage: at least one cut term is parametric. There are two subcases:
either one cut term is principal or they are both parametric.

Consider the subcase in which one cut term is principal. W.l.o.g. we assume
that the cut-term a is principal in the left-premise x ` a of the cut in the original
proof (the other case is symmetric). We can assume w.l.o.g. that the conclusion of
the cut is different from either of its premises. Then, conditions C2 and C’3 make
it possible to trace the history-tree of the occurrences of the cut-term a in π2 (cf.
[15, Remark 1]), and by conditions C’2 and C4, any ancestor of a is of the same
type and in the same position (that is, is in precedent position). The situation can
be pictured as follows:

... π1
x ` a

... π2.i
ai ` yi

. . .

... π2. j

(x j ` y j)[a j]
pre

...

... π2.k

(xk ` yk)[ak]pre

. .
.

. . .
... . .
. π2

a ` y
x ` y

where, for i, j, k ∈ {1, . . . , n}, the nodes

ai ` yi, (x j ` y j)[a j]pre, and (xk ` yk)[ak]pre

represent the three ways in which the leaves ai, a j and ak in the history-tree of a
in π2 can be introduced, and which will be discussed below. The notation a (resp.
a) indicates that the given occurrence is principal (resp. parametric). Notice that
condition C4 guarantees that all occurrences in the history of a are in precedent
position in the underlying derivation tree, and condition C’2 guarantees that the
type of a never changes along its history. Let al be introduced as a parameter (as
represented in the picture above in the conclusion of π2.k for al = ak). Assume
that (xk ` yk)[ak]pre is the conclusion of an application inf of the rule Ru (for
instance, in the calculus of Section 4, this situation arises if ak is of type Fm and
has been introduced with an application of Weakening, or if ak is of type Fnc and
has been introduced with an application of Atom, or Balance). Since ak is a leaf
in the history-tree of a, we have that ak is congruent only to itself in xk ` yk.
Notice that the assumption that every derivable sequent is type-uniform (C9), and
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the type-alikeness of parameters (C’2) imply that the sequent a1, ak and x have the
same type. Hence, C’7 implies that it is possible to substitute x for ak by means
of an application of the same rule Ru. That is, (xk ` yk)[ak] can be replaced by
(xk ` yk)[x/ak].

Let al be introduced as a principal formula. The corresponding subcase in [29]
splits into two subsubcases: either al is introduced in display or it is not.

If al is in display (as represented in the picture above in the conclusion of π2.i
for al = ai), then we form a subderivation using π1 and π2.i and applying cut as the
last rule. The assumptions that the original cut is strongly type-uniform (C10), that
every derivable sequent is type-uniform (C9), and the type-alikeness of parameters
(C’2) imply that the sequent ai ` yi is of the same type as the sequents x ` a and
a ` y. Hence, the new cut is strongly type-uniform.

If al is not in display (as represented in the picture above in the conclusion
of π2. j for al = a j), then condition C’5 implies that (x j ` y j)[a j]

pre is an axiom,
and C”5 implies that some axiom a j ` y′j exists, which is display-equivalent to
the first axiom, and in which a j occurs in display. Let π′ be the derivation which
transforms a j ` y′i into (x j ` y j)[a j]

pre. We form a subderivation using π1 and
a j ` y′j and joining them with a cut application, then attaching π′[x/a j]pre below
the new cut.

The transformations just discussed explain how to transform the leaves of the
history tree of a. Finally, since, as discussed above, x has the same type of a,
condition C’7 implies that substituting x for each occurrence of a in the history
tree of the cut term a in π2 (and in each occurring π′ as above) gives rise to an
admissible derivation π2[x/a]pre (use C’6 for the symmetric case).

Summing up, this procedure generates the following proof tree:

... π1
x ` a

... π2.i
ai ` yi

x ` yi

. . .

... π1
x ` a a j ` y′

x ` y′[a]suc

... π
′[x/a]pre

(x j ` y j)[x/a j]pre

...

... π2.k

(xk ` yk)[x/ak]pre

. .
.

. . .
... . .
. π2[x/a]pre

x ` y

We observe that in each newly introduced application of the cut rule, both cut terms
are principal. Hence, we can apply the procedure described in the Principal stage
and transform the original derivation in a derivation in which the cut terms of the
newly introduced cuts have strictly lower complexity than the original cut terms.
When the newly introduced applications of cut are of lower height than the original

18



one, we do not need to resort to the Principal stage.7

Finally, as to the subcase in which both cut terms are parametric, consider
a proof with at least one cut. The procedure is analogous to the previous case.
Namely, following the history of one of the cut terms up to the leaves, and ap-
plying the transformation steps described above, we arrive at a situation in which,
whenever new applications of cuts are generated, in each such application at least
one of the cut formulas is principal. To each such cut, we can apply (the symmetric
version of) the Parametric stage described so far.

�

4 The Dynamic Calculus for EAK

As mentioned in the introduction, the key idea is to introduce a language in which
not only formulas are generated from formulas and actions (as it happens in the
symbol 〈α〉A) and formulas are generated from formulas and agents (as it happens
in the symbol 〈a〉A), but also actions are generated from the interactions between
agents and actions.

An algebraically motivated introduction. In the present section, we define a
multi-type language into which the language of (I)EAK translates, and in which
each generation step mentioned above is explicitly accounted for via special binary
connectives taking arguments of different types. More than one alternative is possi-
ble in this respect; our choice for the present setting consists of the following types:
Ag for agents, Fnc for functional actions, Act for actions, and Fm for formulas. We
also stipulate that Ag, Act, Fm and Fnc are pairwise disjoint. The new connectives,
and their types, are:

M0, N0 : Fnc × Fm→ Fm(4.1)

M1, N1 : Act × Fm→ Fm(4.2)

M2, N2 : Ag × Fm→ Fm(4.3)

M3, N3 : Ag × Fnc→ Act(4.4)

We stipulate that the interpretations of the connectives are maps preserving exist-
ing joins in each coordinate (see below) with algebras as domains and codomains
suitable to interpret (functional) actions, formulas, and agents respectively. For in-
stance, suitable choices for domains of interpretation for formulas can be complete
atomic Boolean algebras or perfect Heyting algebras (cf. [18]); in the setting of

7 This is for instance the case if, in the original derivation, the history-tree of the cut term a (in the
right-hand-side premise of the given cut application) contains at most one leaf al which is principal.
However, the procedure described above in the Parametric stage does not always produce cuts of
lower height. For instance, in the calculus introduced in Section 4, this situation may arise when two
ancestors of a cut term of type Fm are introduced as principal along the same branch, and then are
identified via an application of the rule Contraction.
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e.g. epistemic action logic (cf. [27]), following [1], the domain of interpretation
for actions can be a quantale or a relation algebra (of which the functional actions
can be a sub-monoid). In the setting of EAK, in which no algebraic structure is re-
quired of actions and agents, a suitable domain of interpretation can be a complete
join-semilattice, which is completely join-generated by a given subset (interpreting
the functional actions), and the domain of interpretation of agents can be a set.8

In Section 5, the final coalgebra Z (cf. [15, Section 5]) is taken as semantic
environment for the Dynamic Calculus. In this setting, the boolean algebra PZ is
taken as the domain of interpretation for Fm-type terms, Fnc-type terms are inter-
preted as graphs of partial functions on Z, subject to certain restrictions, and the
domain of interpretation of Act-type terms is the complete

⋃
-semilattice generated

by the domain of interpretation of Fnc.
In all the domains of interpretation which are complete lattices (i.e. the algebras

interpreting terms of type Fm and Act), the fact that the interpretation of each
connective M and N is completely join-preserving in its second coordinate implies
that it has a right adjoint in its second coordinate. These right adjoints provide
natural interpretation for the following additional connectives:

−I0 , −B0 : Fnc × Fm→ Fm(4.5)

−I1 , −B1 : Act × Fm→ Fm(4.6)

−I2 , −B2 : Ag × Fm→ Fm.(4.7)

The assumptions above imply that M1 and N 1 have right adjoints also in their first
coordinate. Hence, each of the following connectives can be naturally interpreted,
in the setting above, as the right adjoint of M1 and N 1 respectively:

J1 , C1 : Fm × Fm→ Act.(4.8)

Intuitively, for all formulas A, B, the term BJ1A denotes the weakest epistemic
action γ such that, if A was true before γ was performed, then B is true after any
successful execution of γ. This is also related to to Vaughn Pratt’s notion of weak-
est preserver (cf. [24, Section 4.2]) However, we cannot assume that more adjoints
exist, which would provide semantic interpretation for the following symbols:

J∼0 , C∼0 : Fm × Fm→ Fnc

J∼2 , C∼2 : Fm × Fm→ Ag

J∼3 , C∼3 : Act × Fnc→ Ag

∼I3 , ∼B3 : Ag × Act→ Fnc.
8Notice also that for other dynamic logics the domain of interpretation of agents might be en-

dowed with some algebraic structure; for instance, in the case of game logic (cf. [21]), the set of
agents consists of two elements, on which a negation-type operation can be assumed.
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Virtual adjoints. We adopt the following notational convention about the three
different shapes of arrows introduced so far. Arrows with straight tails (−B and
−I ) stand for connectives which have a semantic counterpart and which are in-
cluded in the language of the Dynamic Calculus (see the grammar of operational
terms on page 23); arrows with no tail (e.g. J and C ) do have a semantic interpre-
tation but are not included in the language at the operational level, and arrows with
squiggly tails (∼B , C∼ , ∼I and J∼ ) stand for syntactic objects, called virtual ad-
joints, which do not have a semantic interpretation, but will play an important role,
namely guaranteeing the Dynamic Calculus to enjoy the relativized display prop-
erty (cf. Definition 2). In what follows, virtual adjoints will be introduced only as
structural connectives. That is, they will not correspond to any operational con-
nective, and they will not appear actively in any rule schema other than the display
postulates (cf. Definition 1). As will be shown in Section 7, these limitations keep
the calculus sound even if virtual adjoints do not have an independent semantic
interpretation.
The M a −I and N a −B adjunction relations stipulated above translate into the
following clauses for every agent a, every functional action α, every action γ, and
every formula A:

α M0 A ≤ B iff A ≤ α−I0 B αN0 A ≤ B iff A ≤ α−B0 B(4.9)

γ M1 A ≤ B iff A ≤ γ−I1 B γN1 A ≤ B iff A ≤ γ−B1 B(4.10)

a M2 A ≤ B iff A ≤ a−I2 B aN2 A ≤ B iff A ≤ a−B2 B.(4.11)

The adjunction relations M1 a J 1 and N1 a C 1 translate into the following clauses
for every action γ and every formula A:

γ M1 A ≤ B iff γ ≤ BJ1A γN1 A ≤ B iff γ ≤ BC1A.(4.12)

As we will see, the display postulates corresponding to triangle- and arrow-
shaped connectives are modelled over the conditions (4.9)-(4.12) above. Also the
display postulates involving virtual adjoints are shaped in the same way, which
explains their name.

Translating D’.EAK into the multi-type setting. The intended link between the
language of D’.EAK (cf. Section 2.4) and the language of the Dynamic Calculus
is illustrated in the following table:

〈α〉A becomes α M0 A 〈α

〉 A becomes αN0 A
〈a〉A becomes a M2 A 〈a

〉 A becomes aN2 A
[α]A becomes α−B0 A [α

] A becomes α−I0 A
[a]A becomes a−B2 A [a

] A becomes a−I2 A
1α becomes α M0 >.

The table above can be extended to the definition of a formal translation between
the operational language of D’.EAK and that of the Dynamic Calculus, simply
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by preserving the non modal propositional fragment. We omit the details of this
straightforward inductive definition. In Section 5, this translation will be elabo-
rated on, and the interpretation of the language of the Dynamic Calculus in the
final coalgebra will be defined so that the translation above preserves the validity
of sequents. In the light of this translation, the adjunction conditions in clauses
(4.9) correspond to the adjunction conditions (2.5) in D’.EAK, which, in their turn,
motivate the display postulates reported on in Section 2.4:

〈α〉 a [α

]

〈α

〉

a [α].

The connectives M3 and N 3 have no counterpart in the language of D’.EAK, but the
introduction of N 3 is exactly what brings the additional expressiveness we need in
order to eliminate the label. Indeed, we stipulate that for every a and α as above,

aN3 α =
∨
{β | αaβ}. (4.13)

A way to understand this stipulation is in the light of the discussion in [15, Section
4.3] after clause (8). There, in the context of a discussion about the proof system
in [1], the link between the semantic condition f M

A (m?q) ≤ f M
A (m)? f Q

A (q) (cf. [1,
Definitions 2.2(2) and 2.3]) and the axiom (2.4)—which in [1] was left implicit—is
made more explicit, by understanding the action f Q

A (q) as the join, taken in Q, of
all the actions q′ which are indistinguishable from q for the agent A. In the present
setting, the stipulation (4.13) says that aN3 α encodes exactly the same information
encoded in f Q

A (q), namely, the nondeterministic choice between all the actions that
are indistinguishable from α for the agent a.

Additional conditions. As was the case in the setting of D’.EAK, in order to
express in this new language that e.g. 〈α〉 and [α] are “interpreted over the same
relation”, Sahlqvist correspondence theory (cf. e.g. [8, 9, 7] for a state-of-the art-
treatment) provides us with two alternatives: one of them is that we impose the
following Fischer Servi-type conditions to hold for every a ∈ Ag, α ∈ Fnc, γ ∈ Act
and A, B ∈ Fm:

(α M0 A)→ (α−B0 B) ≤ α−B0 (A→ B) (αN0 A)→ (α−I0 B) ≤ α−I0 (A→ B)

(γ M1 A)→ (γ−B1 B) ≤ γ−B1 (A→ B) (γN1 A)→ (γ−I1 B) ≤ γ−I1 (A→ B)

(a M2 A)→ (a−B2 B) ≤ a−B2 (A→ B) (aN2 A)→ (a−I2 B) ≤ a−I2 (A→ B).

α M0 (A

∧

B) ≤ (α−B0 A)

∧

(α M0 B) αN0 (A

∧

B) ≤ (α−I0 A)

∧

(αN0 B)

γ M1 (A

∧

B) ≤ (γ−B1 A)

∧

(γ M1 B) γN1 (A

∧

B) ≤ (γ−I1 A)

∧

(γN1 B)

a M2 (A

∧

B) ≤ (a−B2 A)

∧

(a M2 B) aN2 (A

∧

B) ≤ (a−I2 A)

∧

(aN2 B).

To see that the conditions above correspond to the usual Fischer Servi axioms
in standard modal languages, one can observe that the conditions in the first and
third line above are images, under the translation discussed above, of the Fischer
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Servi axioms reported on in Section 2.2). The second alternative is to impose
that, for every 0 ≤ i ≤ 2, the connectives Mi and N i yield conjugated diamonds
(cf. discussion in [15, Section 6.2]); that is, the following inequalities hold for all
a ∈ Ag, α, β ∈ Fnc, and A, B ∈ Fm:

(α M0 A) ∧ B ≤ α M0 (A ∧ αN0 B) (αN0 A) ∧ B ≤ αN0 (A ∧ α M0 B)

(γ M1 A) ∧ B ≤ γ M1 (A ∧ γN1 B) (γN1 A) ∧ B ≤ γN1 (A ∧ γ M1 B)

(a M2 A) ∧ B ≤ a M2 (A ∧ aN2 B) (aN2 A) ∧ B ≤ aN2 (A ∧ a M2 B).

α−B 0(A ∨ α−I0 B) ≤ (α−B 0A) ∨ B α−I0 (A ∨ α−B 0B) ≤ (α−I0 A) ∨ B

γ−B 1(A ∨ γ−I1 B) ≤ (γ−B 1A) ∨ B γ−I1 (A ∨ γ−B 1B) ≤ (γ−I1 A) ∨ B

a−B 2(A ∨ a−I2 B) ≤ (a−B 2A) ∨ B a−I2 (A ∨ a−B 2B) ≤ (a−I2 A) ∨ B.

The conditions in the first and third line above are images, under the translation
discussed above, of the conjugation conditions reported on in [15, Section 6.2].

The operational language, formally. Let us introduce the operational terms of
the multi-type language by the following simultaneous induction, based on sets
AtProp of atomic propositions, Fnc of functional actions, and Ag of agents:

Fm 3 A ::= p | ⊥ | > | A ∧ A | A ∨ A | A→ A | A

∧

A |

α M0 A | α−B0 A | γ M1 A | γ−B1 A | a M2 A | a−B2 A |

αN0 A | α−I0 A | γN1 A | γ−I1 A | aN2 A | a−I2 A

Fnc 3 α ::= α

Act 3 γ ::= aN3 α | a M3 α

Ag 3 a ::= a

The fundamental difference between the language above and the language of D’.EAK
is that, in D’.EAK, agents and actions are parametric indexes in the construction
of formulas, which are the only first-class citizens. In the present setting, however,
each type lives on a par with any other. Because of the relative simplicity of the
EAK setting, two of the four types are attributed no algebraic structure at the op-
erational level. However, it is not difficult to enrich the algebraic structure of those
types with sensible and intuitive operations: for instance, the skip and crash actions
are functional, and parallel and sequential composition and iteration on functional
actions preserve functionality, hence can be added to the array of constructors for
Fnc. As a consequence of the fact that each type is a first-class citizen, as we will
see shortly, four types of structures will be defined, and the turnstile symbol in the
sequents of this calculus will be interpreted in the appropriate domain.

On the meta-linguistic labels αaβ. Let us illustrate how the label αaβ can be
subsumed when translating D’.EAK-formulas in the multi-type language. Con-
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sider for example (the intuitionistic counterparts of) the following axiom (cf. (2.4)):

( Pre(α)→
∧
{[a][β]A | αaβ} )→ [α][a]A

By applying the translation above we get:

( α M0 > →
∧
{a−B2 (β−B0 A) | αaβ} )→ α−B0 (a−B2 A).

Since (the semantic interpretation of) −B2 is completely meet-preserving in the
second coordinate, the clause above is semantically equivalent to the following
one:

( α M0 > →
[
a−B2

∧
{β−B0 A | αaβ}

]
)→ α−B0 (a−B2 A).

The next step is the only place of the chapter in which we will need to assume that
(the domains of interpretation of Fcn and Act are such that) Fcn ⊆ Act. Under this
assumption, −B0 can be taken as the restriction of −B1 . By general order-theoretic
facts (see e.g. [10]), the latter is completely join-reversing in its first coordinate.
Hence, we can equivalently rewrite the clause above as follows:

( α M0 > →
[
a−B2

(∨
{β | αaβ} −B1 A

)]
)→ α−B0 (a−B2 A).

Now we apply the stipulation (4.13) and get the following :

( α M0 > →
[
a−B2

(
(aN3 α)−B1 A

)]
)→ α−B0 (a−B2 A). (4.14)

An analogous argument justifies that the following axiom:

〈α〉〈a〉A→ ( Pre(α) ∧
∨
{〈a〉〈β〉A | αaβ} )

corresponds to:

α M0 (a M2 A)→ ( α M0 > ∧ a M2 [(aN3 α) M1 A] ). (4.15)

Without appealing to Fcn ⊆ Act, we could take the correspondences above as
primitive stipulations.

Structural language, formally. As discussed in the preliminaries, display cal-
culi manipulate two closely related languages: the operational and the structural.
Let us introduce the structural language of the Dynamic Calculus, which as usual
matches the operational language, although in the present case not in the same way
as in D’.EAK. We have formula-type structures, functional action-type structures,
action-type structures, agent-type structures, defined by simultaneous recursion as
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follows:

FM 3 X ::= A | I | X ; X | X > X |

F10 X | F

1

0 X | Γ11 X | Γ

1

1 X | a12 X | a
1

2 X |

Fa0 X | F

a

0 X | Γa1 X | Γ

a

1 X | aa2 X | a

a

2 X

FNC 3 F ::= α | X2∼0 X | Xb∼0 X | a∼43 Γ | a∼d3 Γ

ACT 3 Γ ::= aa3 F | a13 F | X 11 X | X a1 X

AG 3 a ::= a | X2∼2 X | Xb∼2 X | Γ2∼3 F | Γb∼3 F.

The propositional base. As is typical of display calculi, each operational con-
nective corresponds to one structural connective. In particular, the propositional
base connectives behave exactly as in D’.EAK, but for the sake of self-containment,
we are going to report on these rules below:

Structural symbols < > ; I
Operational symbols ∧ ←

∧

→ ∧ ∨ > ⊥

Structural Rules

Id p ` p
X ` A A ` Y CutX ` Y

X ` Y
I1

L I ` Y < X
X ` Y

I1
RX < Y ` I

X ` Y
I2

L I ` X > Y
X ` Y

I2
RY > X ` I

I ` XIWL Y ` X
X ` I IWRX ` Y

X ` ZW1
L Y ` Z < X

X ` Z W1
RX < Z ` Y

X ` ZW2
L Y ` X > Z

X ` Z W2
RZ > X ` Y

X ; X ` Y
CL X ` Y

Y ` X ; X
CRY ` X

Y ; X ` Z
EL X ; Y ` Z

Z ` X ; Y
ERZ ` Y ; X

X ; (Y ; Z) ` W
AL (X ; Y) ; Z ` W

W ` (Z ; Y) ; X
ARW ` Z ; (Y ; X)
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Display Postulates

X ; Y ` Z
( , <)

X ` Z < Y

Z ` X ; Y
(<, ; )

Z < Y ` X

X ; Y ` Z
( , >)

Y ` X > Z

Z ` X ; Y
(>, ; )

X > Z ` Y

The classical base is obtained by adding the so-called Grishin rules (following
e.g. [16]), which encode classical, but not intuitionistic validities:

X > (Y ; Z) ` W
GriL

(X > Y) ; Z ` W

W ` X > (Y ; Z)
GriR

W ` (X > Y) ; Z

Operational Rules

⊥L
⊥ ` I

X ` I
⊥RX ` ⊥

I ` X
>L

> ` X
>RI ` >

A ; B ` Z
∧L A ∧ B ` Z

X ` A Y ` B
∧RX ; Y ` A ∧ B

A ` X B ` Y
∨L A ∨ B ` X ; Y

Z ` A ; B
∨RZ ` A ∨ B

B ` Y X ` A←L B← A ` Y < X
Z ` B < A ←RZ ` B← A

B < A ` Z

∧ L B ∧ A ` Z
Y ` B A ` X

∧ RY < X ` B ∧ A

X ` A B ` Y→L A→ B ` X > Y
Z ` A > B →RZ ` A→ B

A > B ` Z∧

L A

∧

B ` Z
A ` X Y ` B ∧

RX > Y ` A

∧

B

Rules for heterogeneous connectives. Unlike what was the case in the setting of
D’.EAK, in the present setting, each heterogeneous structural connective is associ-
ated with at most one operational connective, as illustrated in the following table:
for 0 ≤ i ≤ 3 and j ∈ {0, 2},

Structural symbols 1i ai

1

j

a

j
Operational symbols Mi Ni −Bj −Ij

That is, structural connectives are to be interpreted as usual in a context-sensitive
way, but the present language lacks the operational connectives which would cor-
respond to them on one of the two sides. This is of course because in the present
setting we do not need them. However, in a setting in which they would turn out
to be needed, it would not be difficult to introduce the missing operational connec-
tives. We can now introduce the operational rules for heterogeneous connectives.
Let x, y stand for structures of an undefined type, and let a, b denote operational
terms of the appropriate type. Then, for 0 ≤ i ≤ 3,
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a1i b ` z
MiL a Mi b ` z

x ` a y ` b
MiR

x1i y ` a Mi b

aai b ` z
NiL aNi b ` z

x ` a y ` b
NiR

xai y ` aNi b

and for 0 ≤ i ≤ 2,

x ` a B ` Y−BiL
a−BiB ` x

1

iY
Z ` a

1
iB −BiRZ ` a−BiB

x ` a B ` Y−IiL
a−IiB ` x

a
iY

Z ` a

a

iB −IiRZ ` a−IiB

where B,Y,Z are formula-type operational and structural terms. Clearly, the rules
in the two tables above for i = 0, 2 yield the operational rules for the dynamic
and epistemic modal operators under the translation given early on. Notice that
each sequent is always interpreted in one domain. However, since heterogeneous
connectives take arguments of different types (which justifies their name), premises
of binary rules are of course interpreted in different domains.
Axioms will be given in three types9, as follows:

a ` a α ` α p ` p ⊥ ` I I ` >

where the first and second axioms from the left are of type Ag and Fnc respectively,
and the remaining ones are of type Fm. A generalization of p ` p will be added
below to the system (see atom axiom on page 29).
Further, we allow the following strongly type-uniform (cf. Definition 3.2) cut rules
on operational terms:

a ` a a ` b
a ` b

F ` α α ` G
F ` G

Γ ` γ γ ` ∆

Γ ` ∆

X ` A A ` Y
X ` Y

Next, we give the display postulates for heterogeneous connectives. In what fol-
lows, let x, y, z stand for structures of an undefined type. Then, for 0 ≤ i ≤ 2,

x1i y ` z
(Mi, −Ii)

y ` x

a

i z

xai y ` z
(N i, −Bi)

y ` x

1

i z

For i = 1, we also have

x11 y ` z
(M1, J−1)

x ` z a1 y

xa1 y ` z
(N1 , C−1)

x ` z 11 y
9Indeed, there is no axiom schema for atomic terms of type Act, because the language does not

admit them.
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The display postulates above involve structural connectives each of which has a
semantic interpretation. In the following display postulates, the squiggly arrows
are not semantically justified: they are the virtual adjoints, informally introduced at
the beginning of the present Section 4, which will be discussed in detail in Section
7. For each i = 0, 2, 3, we have:

x1i y ` z
(Mi, J∼i)

x ` zb∼i y

xai y ` z
(N i, C∼i)

x ` z2∼i y

and for i = 3,

x13 y ` z
(M3, ∼I3)

y ` x∼d3 z

xa3 y ` z
(N3 , ∼B3)

y ` x∼43 z

Notice that sequents occurring in each display postulate involving heteroge-
neous connectives are not of the same type. However, it is easy to see that the
display postulates preserve the type-uniformity (cf. Definition 3.1); that is, if the
premise of any instance of a display postulate is a type-uniform sequent, then so is
its conclusion. Next, the necessitation, conjugation, Fischer Servi, and monotonic-
ity rules: for 0 ≤ i ≤ 2,

I ` W(neci M)
x1i I ` W

W ` I (neci −B )
W ` x

1

i I

I ` W(neciN )
xai I ` W

W ` I (neci −I )
W ` x

a

i I

x1i ((xai Y) ; Z) ` W
(con ji M)

Y ; (x1i Z) ` W
W ` x

1

i ((x

a

i Y) ; Z)
(con ji −B )

W ` Y ; (x

1

i Z)

xai ((x1i Y) ; Z) ` W
(con jiN )

Y ; (xai Z) ` W
W ` x

a

i ((x

1

i Y) ; Z)
(con ji −I )

W ` Y ; (x

a

i Z)

(x

1

i Y) > (x1i Z) ` W
(FSi M)

x1i (Y > Z) ` W
W ` (x1i Y) > (x

1

i Z)
(FSi −B )

W ` x

1

i (Y > Z)

(x

a

i Y) > (xai Z) ` W
(FSiN )

xai (Y > Z) ` W
W ` (xai Y) > (x

a

i Z)
(FSi −I )

W ` x

a

i (Y > Z)

(x1i Y) ; (x1i Z) ` W
(moni M)

x1i (Y ; Z) ` W
W ` (x

1

i Y) ; (x

1

i Z)
(moni −B )

W ` x

1

i (Y ; Z)

(xai Y) ; (xai Z) ` W
(moniN )

xai (Y ; Z) ` W
W ` (x

a

i Y) ; (x

a

i Z)
(moni −I )

W ` x

a

i (Y ; Z)
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Next, we introduce the rules translating the interaction axioms between dynamic
and epistemic modalities. In what follows we omit the subscripts, since the reading
is unambiguous.

(aa F)a (aa X) ` Y
swap-outL

aa (Fa X) ` Y
X ` (aa F)

a

(a

a

Y)
swap-outR

X ` a
a

(F

a

Y)

aa (Fa X) ` Y
swap-inL

(aa F)a (aa ((F1 I) ; X)) ` Y
X ` a

a
(F

a

Y)
swap-inR

X ` (aa F)

a

(a

a

((F1 I) > Y))

The structure (aa F) in the swap-rules above has absorbed the labels αaβ in the
corresponding swap-rules of D’.EAK. Moreover, new swap-out rules are unary,
whereas the corresponding ones in D’.EAK are of a non-fixed arity.

The following atom axiom translates the atom axiom of D’.EAK:

F1 ◦ (F2 ◦ · · · (Fn ◦ p) · · · ) ` G1B(G2B · · · (GmBp) · · · )

where F1, . . . , Fn,G1, . . . ,Gm ∈ FNC, ◦ ∈ {10 , a0 }, B ∈ {

1

0 ,

a

0 } and
n,m ∈ N. In what follows, we sometimes indicate the atom axiom with the shorter
symbol Φp ` Ψp. Notice the following difference between the present atom axiom
and the one of D’.EAK (cf. [15]): the structural variables Fs and Gs (which are
typically instantiated as operational variables α and β of type Fnc) translate what
in the atom axiom of D’.EAK were indexes for logical connectives, whereas in the
Dynamic Calculus, the operational variables contained in any instantiation of the
Fs and Gs are first-class citizens, on the same ground as the operational variable p
of type Fm. Hence we need to stipulate whether the introduction of each of these
variables is parametric or not. As is customary in the literature on display calculi
(cf. [3, Definition 4.1]), we stipulate that the only principal variables in atom are
the ps, and all the other variable occurrences are parametric.
Finally, the following balance rule:

X ` Y
F10 X ` F

1

0 Y

is sound only for F ∈ FNC, and cannot be extended to an arbitrary actions.10 In
this rule, every variable occurrence is parametric, and each occurrence of F is only
congruent to itself.

10To see this, notice that this rule instantiates to

p ` p

F10 p ` F

1

0 p

If the rule balance is to be sound, the validity of the premise implies the validity of the conclusion,
which is the translation of the sequent 〈F〉p ` [F]p, which is equivalent to the axiom 〈F〉p → [F]p.
It is a well known fact from Sahlqvist theory that the latter axiom corresponds to the condition that
the binary relation associated with 〈F〉 and [F] is the graph of a partial function.
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Justifying the two types of actions. As discussed in the introduction, one of
the initial aims of the present paper was introducing a formal framework expres-
sive enough so as to capture at the object-level the information encoded in the
meta-linguistic label αaβ. From the order-theoretic analysis at the beginning of the
present section, it emerged that the additional expressivity encoded in the connec-
tive N3 and its interpretation (4.13) requires a semantic environment which cannot
be restricted to functional actions. The introduction of the general type Act serves
this purpose. However, the fact that the rule balance is only sound for functional ac-
tions is the reason why both types Fnc and Act are needed in order for the Dynamic
Calculus to satisfy conditions C’6 and C’7 of Section 3.2. Indeed, the distinct type
Fnc allows for the rule balance to be formulated so that all parametric variables
occur unrestricted within each type.

5 Soundness

In the present section, we discuss the soundness of the rules of the Dynamic Cal-
culus and prove that those which do not involve virtual adjoints (cf. Section 4) are
sound with respect to the final coalgebra semantics. In [15, Section 5], basic facts
about the final coalgebra have been collected and it is explained in detail how the
rules of display calculi are to be interpreted in the final coalgebra. Here we will
briefly recall some basics, and refer the reader to [15, Section 5] for a complete
discussion.

Structures will be translated into operational terms of the appropriate type, and
operational terms will be interpreted according to their type. Specifically, each
atomic proposition p is assigned to a subset [[p]] of the final coalgebra Z, each
agent a a binary relation aZ = [[a]] on Z representing as usual a’s uncertainty about
the world, and each functional actions α is assigned a functional (i.e. deterministic)
relation αZ = [[α]] ⊆ Z × Z subject to the restriction defining the specific feature of
epistemic actions, namely, that for all z, z′ ∈ Z, if zαZz′, then z ∈ [[p]] iff z′ ∈ [[p]]
for every atomic proposition p.

Further, each agent a is associated with an auxiliary binary relation aFnc on
the domain of interpretation of Fnc, which is the collection of graphs of partial
functions having subsets of Z as domain and range. For each agent a, the relation
aFnc represents a’s uncertainty about which action takes place).

In order to translate structures as operational terms, structural connectives need
to be translated as logical connectives. To this effect, non-modal structural connec-
tives are associated with pairs of logical connectives, and any given occurrence of
a structural connective is translated as one or the other, according to its (antecedent
or succedent) position. The following table illustrates how to translate each propo-
sitional structural connective of type FM, in the upper row, into one or the other of
the logical connectives corresponding to it on the lower row: the one on the left-
hand (resp. right-hand) side, if the structural connective occurs in precedent (resp.
succedent) position.
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Structural symbols < > ; I
Operational symbols ∧ ←

∧

→ ∧ ∨ > ⊥

Recall that, in the Boolean setting treated here, the connectives ∧ and

∧

are
interpreted as A ∧ B := A ∧ ¬B and A

∧

B := ¬A ∧ B.

The soundness of structural and operational rules which only involve active
components of type FM has been discussed in [15] and is here therefore omitted.

As to the heterogeneous connectives, their translation into the corresponding
operational connectives is indicated in the table below, to be understood similarly
to the one above, where the index i ranges over {0, 1, 2, 3} for the triangles and over
{0, 1, 2} for the arrows.

Structural symbols 1i ai

1

i

a

i
Operational symbols Mi Ni −Bi −Ii

The interpretation of the heterogeneous connectives involving formulas and
agents corresponds to that of the well-known forward and backward modalities
discussed in Section 2.4 (below on the right-hand side we recall the notation of
D’.EAK):

[[a M2 A]] = {z ∈ Z | ∃z′ . z aZ z′ & z′ ∈ [[A]]} 〈a〉A

[[aN2 A]] = {z ∈ Z | ∃z . z′aZ z & z′ ∈ [[A]]} 〈a

〉 A

[[a−B2 A]] = {z ∈ Z | ∀z′ . z aZ z′ ⇒ z′ ∈ [[A]]} [a]A

[[a−I2 A]] = {z ∈ Z | ∀z . z′aZ z⇒ z′ ∈ [[A]]} [a
] A

The connectives M0, −B0, N0, −I0, involving formulas and functional actions, are
interpreted in the same way, replacing the relation aZ with the deterministic rela-
tions αZ . From the definitions above, it immediately follows for any α ∈ Fnc, we
have [[α M0 >]] = dom(αZ), where the set

dom(αZ) := {z ∈ Z | ∃z′(z′ ∈ Z & zαZz′)}

is the domain of αZ .
It can also be readily verified that, after having fixed the relations interpreting

all αs and as, the translation of Section 4 preserves the semantic interpretation, that
is, [[A]] = [[A′]] for any D’.EAK formula A, where A′ denotes the translation of A
in the language of the Dynamic Calculus.

The auxiliary relations aFnc = [[a]]Fnc are used to define the interpretations of
M3- and N3-operational terms. Following 4.13, we let

[[a N3 α]] =
⋃
{G | αZ aFnc G},

[[a M3 α]] =
⋃
{G | G aFnc αZ}.

The connectives M1, −B1, N1, −I1, involving Act-type operational terms γ, are in-
terpreted in the same way as the 0- and 2- indexed connectives, replacing the rela-
tion aZ with the interpretation of the appropriate operational term γ of type Act.
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The soundness of all operational rules for heterogeneous connectives immedi-
ately follows from the fact that their semantic counterparts as defined above are
monotone or antitone in each coordinate.

The soundness of the rule balance immediately follows from the fact that the
functional actions are interpreted as deterministic relations (for more details cf.
[15, Section 6.2]).

The soundness of the cut-rules follows from the transitivity of the inclusion
relation in the domain of interpretation of each type.

The soundness of the Atom axioms is argued similarly to that of the Atom ax-
ioms of the system D’.EAK, crucially using the fact that epistemic actions do not
change the factual states of affairs (cf. [15, Section 6.2]).

The display rules (Mi, −Ii) and (N i, −Bi) for 0 ≤ i ≤ 2, and (M1, J−1) and
(N1, C−1) are sound as the semantics of the triangle and arrow connectives form
adjoint pairs.

On the other hand, in the display rules (M3, ∼I3), (N3, ∼B3), (Mi, J∼i) and
(N i, C∼i) for i = 0, 2, 3, the arrow-connectives are what we call virtual adjoints
(cf. Section 4), that is, they do not have a semantic interpretation. In the next
section, we will account for the fact that their presence in the calculus is safe.

Soundness of necessitation, conjugation, Fischer Servi, and monotonicity rules
is straightforward and proved as in [15]. In the remainder of the section, we discuss
the soundness of the new rules swap-in and swap-out recalled below.

Fact 5.1. The following defining clause for the interpretation of N1-operational
terms

[[γ N1 A]] = {z ∈ Z | ∃z . z′γZ z & z′ ∈ [[A]]}

immediately implies that the semantic interpretation of N1 is completely
⋃

-preserving
in its first coordinate.

Proof. If γZ =
⋃

i∈I βi, then clearly z′γZz iff z′βiz′ for some i ∈ I. �

As to the soundness of swap-outL, assume that the structures a, F, X and Y
have been given the following interpretations, according to their type, as discussed
above: aZ ⊆ Z × Z, aFnc is a binary relation on graphs of partial functions on Z, FZ

is a functional relation on Z, and XZ ,YZ ⊆ Z. Let

aZ N3 FZ :=
⋃
{β | FZaFncβ}.

Assume that the premise of swap-outL is satisfied. That is:

̂̂aZN3FZ

〈

aZ

〉

XZ ⊆ YZ ,

where the symbols ̂̂aZN3FZ and

〈

aZ

〉

denote the semantic diamond operations as-
sociated with the converses of the relations aZ N 3FZ and aZ respectively. Then, the
following chain of equivalences holds:
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̂̂aZN3FZ

〈

aZ

〉

XZ ⊆ YZ iff
⋃
{

〈

G

〉

〈

aZ

〉

XZ | FZaFnc G} ⊆ YZ (fact 5.1)

iff

〈

G

〉

〈

aZ

〉

XZ ⊆ YZ for every G s.t. FZaFnc G

iff XZ ⊆ [aZ][G]YZ for every G s.t. FZaFnc G
iff XZ ⊆

⋂
{[aZ][G]YZ | FZaFnc G}

hence XZ ⊆ (dom(FZ))c ∪
⋂
{[aZ][G]YZ | FZaFnc G}.

Consider the new variables p, q, a, α, and βi for each Gi such that FZaFncGi. Let
us stipulate that [[p]] := XZ , [[q]] := YZ , [[a]] := aZ , [[α]] := FZ , and [[βi]] := Gi.
Hence [[Pre(α)]] = [[α M0 >]] = dom(FZ). Therefore, the computation above can
continue as follows:

XZ ⊆ (dom(FZ))c ∪
⋂
{[aZ][G]YZ | FZaFnc G}.

iff [[p]] ⊆ [[Pre(α)→
∧
{[a][β]q | αa β}]]

iff [[p]] ⊆ [[[α][a]q]]
iff XZ ⊆ [FZ][aZ]YZ

iff

〈

aZ

〉

〈

FZ

〉

XZ ⊆ YZ

which completes the proof of the soundness of swap-outL. The proof of the sound-
ness of the remaining swap-rules is similar.

6 Completeness and cut elimination

In 6.1, we discuss the completeness of the Dynamic Calculus w.r.t. the final coalge-
bra semantics. We show that the translation (cf. Section 4) of each of the EAK ax-
ioms is derivable in the Dynamic Calculus. Our proof is indirect, and relies on the
fact that EAK is complete w.r.t. the final coalgebra semantics, and that the trans-
lation preserves the semantic interpretation on the final coalgebra (as discussed
in Section 5). In 6.2, we show that the Dynamic Calculus is quasi-properly dis-
playable (cf. Section 3.2). By Theorem 3.3, this is enough to establish that the
calculus enjoys cut elimination and the subformula property.

6.1 Derivable rules and completeness

In what follows, a and α are atomic variables (and also the generic operational
terms) of type Ag and Fnc respectively, and A, B are generic operational terms of
type Fm. Since the reading is unambiguous, in the remainder of the present paper
the indexes of the heterogeneous connectives are dropped.
Under the stipulations above, the translations of the rules reduce from D’.EAK

(cf. Section 2.4) can be derived in the Dynamic Calculus as follows.
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α1 I ;α1 A ` X
Dis0M

α1 (I ; A) ` X

I ; A ` α

a

X

I ` α

a

X < A

A ` α

a

X

α1 A ` X

Also the translations of the comp rules are derivable in the Dynamic Calculus as
follows.

α1 (αa X) ` Y

αa X ` α
a

Y

I ` αa X > α

a

Y

αa X ; I ` α

a

Y

α1 (αa X ; I) ` Y
conj0M

X ;α1 I ` Y

α1 I ; X ` Y

Let us derive the axiom (4.14):

a ` a

a ` a α ` α

aaα ` aNα A ` A

(aNα)−B A ` (aaα)

1

A

a−B ((aNα)−B A) ` a

1

((aaα)

1

A)

aa (a−B ((aNα)−B A)) ` ((aaα)

1

A)

((aaα)a (aa (a−B ((aNα)−B A))) ` A
swap-outL

aa (αa (a−B ((aNα)−B A))) ` A

αa (a−B ((aNα)−B A)) ` a

1

A

αa (a−B ((aNα)−B A)) ` a−B A

a−B ((aNα)−B A) ` α

1

(a−B A)
a−B ((aNα)−B A) ` α−B (a−B A)

Let us derive the axiom (4.15):

a ` a

A ` A
a ` a α ` α

aaα ` aNα

(aaα)1 A ` (aNα) M A

a1 ((aaα)1 A) ` a M ((aNα) M A)

(aaα)1 A ` (a

a

(a M ((aNα) M A)))

A ` (aaα)

a

(a

a

(a M ((aNα) M A)))
swap-outR

A ` a

a

(α

a

(a M ((aNα) M A))

a1 A ` α

a

(a M ((aNα) M A)

a M A ` α

a

(a M ((aNα) M A)

α1 (a M A) ` a M ((aNα) M A)
α M (a M A) ` a M ((aNα) M A)

A slight difference between the setting of [12] and the present setting is that in
that paper only the dynamic boxes are allowed in the object language, even if their
propositional base is taken as non classical. In the present setting however, both the
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dynamic boxes and diamonds are taken as primitive connectives. When moving to
a propositional base which is weaker than the Boolean one, also the diamond/box
interaction axioms such as the following one become primitive:

[α]〈a〉A↔ 1α →
∨
{〈a〉〈β〉A | αaβ}.

The axiom above translates as:

α−B (a M A)↔ α M > → a M ((aNα) M A).

α ` α

a ` a

a ` a α ` α

aaα ` aNα A ` A
(aaα)1 A ` (aNα) M A

a1 ((aaα)1 A) ` a M ((aNα) M A)
(aaα)1 A ` a

a

(a M ((aNα) M A))
A ` (aaα)

a

(a

a

(a M ((aNα) M A)))
swap-outR

A ` a

a

(α

a

(a M ((aNα) M A)))
a1 A ` α

a

(a M ((aNα) M A))
a M A ` α

a

(a M ((aNα) M A))
α−B (a M A) ` α

1

(α

a

(a M ((aNα) M A)))
αa (α−B (a M A)) ` α

a

(a M ((aNα) M A))
I ` (αa (α−B (a M A))) > (α

a

(a M ((aNα) M A)))
αa (α−B (a M A)) ; I ` α

a

(a M ((aNα) M A))
α1 (αa (α−B (a M A)) ; I) ` a M ((aNα) M A)

conj0M
(α−B (a M A)) ; (α1 I) ` a M ((aNα) M A)

α1 I ` (α−B (a M A)) > (a M ((aNα) M A))
I ` α

a

(α−B (a M A)) > (a M ((aNα) M A))
> ` α

a

(α−B (a M A)) > (a M ((aNα) M A))
α1> ` (α−B (a M A)) > (a M ((aNα) M A))
α M > ` (α−B (a M A)) > (a M ((aNα) M A))

(α−B (a M A)) ;α M > ` a M ((aNα) M A)
α M > ; (α−B (a M A)) ` a M ((aNα) M A)

α−B (a M A) ` α M > > a M ((aNα) M A)
α−B (a M A) ` α M > → a M ((aNα) M A)

For the other direction, recall that the counterpart of the rule reduce is derivable
in the Dynamic Calculus 33:
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α ` α I ` >
α1 I ` α M >

a ` a A ` A
a1 A ` a M A

balance
α1 (a1 A) ` α

1

(a M A)
a1 A ` α

a

(α

1

(a M A))
A ` a

a

(α

a

(α

1

(a M A)))
swap-inR

A ` (aaα)

a

(a

a

((α1 I) > (α
1

(a M A))))
(aaα)1 A ` a

a

((α1 I) > (α

1

(a M A)))
aaα ` (a

a

((α1 I) > (α
1

(a M A)))) a A
aNα ` (a

a

((α1 I) > (α
1

(a M A)))) a A
(aNα)1 A ` a

a

((α1 I) > (α

1

(a M A)))
(aNα) M A ` a

a

((α1 I) > (α

1

(a M A)))
a1 ((aNα) M A) ` (α1 I) > (α

1

(a M A))
reduceR

a1 ((aNα) M A) ` α
1

(a M A)
a M ((aNα) M A) ` α

1

(a M A)
α M > → a M ((aNα) M A) ` α1 I > α

1

(a M A)
reduceR

α M > → a M ((aNα) M A) ` α
1

(a M A)
α M > → a M ((aNα) M A) ` α−B (a M A)

The derivations (of the translations) of the remaining axioms have been relegated
to the appendix.

6.2 Belnap-style cut-elimination, and subformula property

In the present subsection, we prove that the Dynamic Calculus for EAK is a quasi-
properly displayable calculus (cf. Section 3.2). By Theorem 3.3, this is enough to
establish that the calculus enjoys the cut elimination and the subformula property.
Conditions C1, C2, C4, C’5, C’6, C’7 and C10 are straightforwardly verified by
inspecting the rules and are left to the reader.

Condition C”5 can be straightforwardly argued by observing that the only ax-
ioms to which a display postulate can be applied are of the atom form: Φp ` Ψp.
In this case, the only applicable display postulates are those rewriting 1 - or a -
structures into

a

- and

1

-structures and vice versa, which indeed preserve the
atom shape. Condition C”8 is straightforwardly verified by inspection on the ax-
ioms. Condition C’2 can be straightforwardly verified by inspection on the rules,
for instance by observing that the domains and codomains of adjoints are rigidly
determined.

The following proposition shows that condition C9 is met:

Proposition 6.1. Any derivable sequent in the Dynamic Calculus for EAK is type-
uniform.

Proof. We prove the proposition by induction on the height of the derivation. The
base case is verified by inspection; indeed, the following axioms are type-uniform
by definition of their constituents:

a ` a α ` α Φp ` Ψp ⊥ ` I I ` >
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As to the inductive step, one can verify by inspection that all the rules of the Dy-
namic Calculus preserve type-uniformity, and that the Cut rules are strongly type-
uniform. �

As to condition C’3, all parameters in all but the swap-in rules satisfy the con-
dition of non-proliferation. In each swap-in rule, the parameters of type Ag and
Fnc in the premise are congruent to two parameters in the conclusion. However, it
is not difficult to see that in each derivation, each application of any cut rule

...
x ` a

...
a ` y

x ` y

of type Ag or Fnc must be such that the structure x reduces to the atomic term a.
Indeed, because the sequent x ` a is derivable, by Proposition 6.1 it must be type
uniform, that is, the structure x needs to be of type AG if a is, or of type FNC if
a is. If x was not atomic, then its main structural connective would be a squig-
gly arrow 2∼ or b∼ . Because these connectives do not have any operational
counterpart, such a structure cannot have been introduced by an application of an
operational rule. Hence, the only remaining possibility is that it has been intro-
duced via a display postulate. But also this case is impossible, since in display
postulates introduce these connectives only in the succedent, and x is in precedent
position. This finishes the verification of condition C’3.
Finally, the verification steps for C’8 are collected in Section 9.1.

7 Conservativity

In the definition of the language of the Dynamic Calculus, we have adopted a rather
inclusive policy. That is, the operational language includes almost all the logical
symbols which could be assigned a natural interpretation purely on the basis of
reasonable assumptions on the order-theoretic properties of the domains of inter-
pretation of the various types of terms, the only exception being the connectives
J1 and C1, which are excluded from the language although they are semantically
justified. A very useful and powerful consequence of the fact that the Dynamic
Calculus enjoys cut elimination Belnap-style is that this cut elimination is then
inherited by the subcalculi corresponding to each fragment of the operational lan-
guage of the Dynamic Calculus which verify as they stand the assumptions of
Theorem 3.3. However, the question is still open about whether these subcalculi
interact with each other in unwanted ways when their proof power is concerned:
for any two such fragments L1 ⊆ L2, does the subcalculus corresponding to L2
conservatively extend the one corresponding to L1? Typically, the absence of un-
wanted interactions among subcalculi is deduced from having cut elimination, and
soundness and completeness w.r.t. a given semantics. This way, in [15] it is also
shown that the system D’.EAK conservatively extends EAK.
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However, this strategy is not immediately applicable to the setting of the Dy-
namic Calculus, due to the structural symbols referred to as virtual adjoints, which
are easily recognizable, since they are shaped like arrows with a squiggly tail:
b∼ , ∼4 etc. Virtual adjoints have no semantic justification, and hence, the rules
in which they specifically occur (that is, the display postulates relative to them)
cannot be justified on semantic grounds. The reason for including virtual adjoints
in the language of the Dynamic Calculus is for it to enjoy the relativized display
property, discussed in Section 2.3, which is key to guarantee the crucial condi-
tion C’8, requiring the existence of a way to solve the principal stage of the cut
elimination theorem (cf. Section 3.3, see also Section 9.1).

When discussing virtual adjoints in Section 4, we claimed that, since they are
only introduced in a derivation by way of display postulates and do not specifically
intervene in any other structural rule, their presence in the calculus does not add
unwanted proof power compared to D’.EAK (and hence to EAK). This is the sense
in which the introduction of the virtual adjoints can be regarded as syntactically
sound. The aim of the present section is to prove this claim.

A general and very powerful method for proving the conservativity of display
calculi has been introduced in [5, 6] for the full intuitionistic linear logic. This
method involves no less than two translations, one from the given display calculus
into an intermediate shallow inference nested sequent calculus, and another one
from the intermediate calculus into a deep inference nested sequent calculus. This
method is very intricate, requiring the verification of hundreds of cases which ac-
count for every possible interaction between the shallow and the deep calculus. The
intricacy of this proof was such that the correctness of the results in [5, 6] has been
established by formalizing them in the proof assistant Isabelle/HOL, as reported in
[11].

However, in the present section, a much smoother proof of conservativity is
given for the Dynamic Calculus for EAK, which does not rely on any nested se-
quent calculus. Rather, the proof below relies on very specific and uncommon
features of the design of the Dynamic Calculus for EAK. In a sense, the very fact
that such a smooth proof is possible witnesses how uncommonly well behaved
EAK is.

Definition 7.1. A sequent x ` y is severe if in the generation trees of either x or y
there are occurrences of structural connectives to which no display postulates can
be applied. Such occurrences will be referred to as severe.

Clearly, the definition above makes sense only in the context of calculi which,
as is the case of the Dynamic Calculus, do not enjoy the full display property
(cf. Definition 1). It can be easily verified that, in the specific case of the Dy-
namic Calculus, there are only two types of severe occurrences: triangle-type
connectives rooting a structure in succedent position, and arrow-type connectives
rooting a structure in precedent position. Examples of severe sequents then are
(a

1

α)1 A ` B and A ` a1 B.
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Lemma 7.2. Any rule in the Dynamic Calculus preserves the severity of sequents.
That is, if a rule is applied to a severe sequent, the conclusion of that rule applica-
tion is also severe.

Proof. By inspection on the rules. �

Fact 7.3. Let x ` y be a sequent of type AG or FNC, in the full language of Dynamic
Calculus, which is derivable by means of a derivation π in which no application
of Weakening, Necessitation, Balance or Atom introduce occurrences of virtual
adjoints. Then x = a for some operational term a of the appropriate type.

Proof. If x is not an atomic structure, then the grammar of AG and FNC prescribes
that x has a virtual adjoint as a main connective. However, the assumptions im-
ply that such structures can be introduced only by way of applications of display
postulates, which introduce them in succedent position. Hence, given the assump-
tions, there is no way in which such a connective can be introduced in precedent
position. �

Lemma 7.4. Let X ` Y be a sequent of type FM which is derivable in the Dy-
namic Calculus by means of a derivation π in which no application of Weakening,
Necessitation, Balance or Atom introduce occurrences of virtual adjoints. Then a
derivation π′ of X ` Y exists every node of which (hence the conclusion in particu-
lar) is free of virtual adjoints.

Proof. Let s be some node/sequent in π where the given virtual adjoint has been
introduced. Since virtual adjoints in the Dynamic Calculus are all virtual “right ad-
joints”, and since, by assumption, they are introduced only by way of applications
of display postulates, the given virtual adjoint is the main connective in the succe-
dent of the sequent s. Moreover, virtual adjoints are main connectives of structures
of type AG and FNC. By type uniformity, this implies that the sequent s is either
of type AG or FNC, and therefore s cannot be the conclusion of π. Some rule R
must exist which takes s as a premise. It can be easily verified by inspection that
R cannot coincide with any structural rule in the Dynamic Calculus which is nei-
ther a cut of the appropriate type nor a display postulate, since all structural rules
different from Cut and display postulates have premises of type FM. We can also
assume w.l.o.g. that R is not an application of Cut. Indeed, by Fact 7.3, s is of the
form a ` x, with a being an operational term, and x being a non-atomic structure
by assumption. Hence, if R was a Cut-application, the inference must be of the
form

...
y ` a

...
a ` x

y ` x

Because Cut rules in the Dynamic Calculus are strongly type-regular, also y ` a
would be a (derivable) sequent of type AG or FNC, hence Fact 7.3 applies to y `
a. That is, y must be atomic, and because y ` a is derivable, y must coincide
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with a. Hence, the conclusion of that Cut application is again s. This shows that
if R was Cut, w.l.o.g. we would be able remove that application from the proof
tree. The remaining options are that R coincides with an introduction rule of some
heterogeneous logical connective. Recall that, by Fact 7.3, s is of the form a ` x,
where a is an operational term. Then, it can be verified by inspection that no
heterogeneous rule is applicable if x is not an atomic structure, which is not the
case of the sequent s, as discussed above. Finally, since the left-hand side of s is
atomic, no other display postulates are applicable to s but the converse direction
of the same display postulate which had introduced the virtual adjoint and which
makes it disappear. Therefore, the refinement π′ of π consists in removing these
double and redundant applications of display postulates. �

Lemma 7.5. If inf is an application of Balance, Atom, Necessitation or Weakening
in which some occurrence of a virtual adjoint is introduced, then the conclusion of
inf is a severe sequent.

Proof. As to Balance, Atom and Necessitationi with i = 0, 2, notice that each of
these rules introduces a structure x of type FNC or AG in precedent position. If
a virtual adjoint is introduced as a substructure of x, then x is non-atomic, and it
can be immediately verified by inspecting the syntax of FNC and AG that the main
connective of x is an arrow-type connective, which would then be in precedent
position. Hence, the resulting sequent is severe.

As to Weakening and Necessitation1, notice that these rules introduce struc-
tures x of type FM and ACT respectively. Recall that virtual adjoints root structures
of type FNC or AG. Hence, if some virtual adjoint occurs in the generation tree of
x, it cannot occur at the root of x. Hence, the virtual adjoint must occur in the scope
of some other structural connective. Notice that the heterogeneous connectives are
the only ones which can take as argument a structure rooted in a virtual adjoint.
We claim that either the virtual adjoint occurs in precedent position (which would
be enough to conclude that the conclusion of inf is severe), or under the scope of
some structural connective to which no display postulate can be applied. Assume
that the virtual adjoint occurs in succedent position. If its immediate ancestor in
the generation tree of X is a triangle-type connective, then these connectives are
in succedent position too, and hence no display postulate can be applied to them,
which makes the conclusion of inf severe, as required. Similarly, if the immedi-
ate ancestor of the virtual adjoint is an arrow-type connective, then it can be easily
checked by inspection that these connectives take structures of type FNC or AG ex-
clusively in their antitone coordinate (that is, on the flat side of the arrow). Hence,
the arrow-type connective is in precedent position, and hence no display postulate
can be applied to it, as required. �

Corollary 7.6. Let A′ ` B′ be a sequent of type Fm in the language of the Dynamic
Calculus, such that A′ and B′ are, respectively, images of some D’.EAK-formulas
A and B under the translation of Section 4. If A′ ` B′ is derivable in the Dynamic
Calculus, then A ` B is derivable in D’.EAK.
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Proof. Let π be a derivation of A′ ` B′ in the Dynamic Calculus. By assump-
tion, A′ ` B′ is not severe. Hence, no rule application in π can introduce severe
sequents, since these, by Lemma 7.2, would then propagate till the conclusion.
Hence in particular, by Lemma 7.5, in π there cannot be any applications of Bal-
ance, Atom, Necessitation or Weakening in which some occurrence of a virtual
adjoint is introduced. Therefore, by Lemma 7.4, a derivation π′ of A′ ` B′ exists
in which no virtual adjoints occur. By the results collected in Section 5, the deriva-
tion π′ is sound w.r.t. the final coalgebra semantics. Hence A′ ` B′ is satisfied on
the final coalgebra semantics. Since, as discussed in Section 5, [[A]] = [[A′]] and
[[B]] = [[B′]], this implies that A ` B is satisfied. Since D’.EAK is complete w.r.t.
the final coalgebra semantics, a D’.EAK-derivation of A ` B exists. �

8 Conclusions and further directions

The present paper is part of a line of research aimed at developing adequate proof-
calculi for dynamic logics. These logics have proven to be very difficult to treat
with standard proof-theoretic tools, due to the very features which characterize
them and make them applicable to diverse fields of science, spanning from arti-
ficial intelligence to social science and economics. A central desideratum in this
line of research is the development of methods which apply uniformly to differ-
ent logics, and which allow a smooth transfer of results from one logic to another.
The framework of display calculi has successfully met this desideratum for wide
classes of logics in the family of modal and substructural logics. In particular, in
the framework of display calculi it is possible to state and prove metatheorems
which guarantee any given proof system to enjoy the all-important cut elimination
property, provided it meets certain conditions on its design.

The main contribution of the present paper is the definition of a display cal-
culus which smoothly encompasses the most proof-theoretically impervious fea-
tures of Baltag Moss and Solecki’s logic of epistemic actions and knowledge.
Besides being well performing (it adequately captures EAK and enjoys Belnap-
style cut elimination), this calculus provides an interesting and in our opinion very
promising methodological platform towards the uniform development of a general
proof-theoretic account of all dynamic logics, and also, from a purely structurally
proof-theoretic viewpoint, for clarifying and sharpening the formulation of criteria
leading to the statement and proof of meta-theoretic results such as Belnap-style
cut-elimination, or conservativity issues.

Seminal approaches. The starting point of this methodology is to introduce
enough syntactic devices, both at the operational and at the structural level, so that
the parameters indexing logical connectives can be accounted for in the system as
terms in the language of choice. This gives rise to the definition of multi-type lan-
guages, endowed with connectives which manage the interaction of the different
types. This approach appears seminally in both [1] and [12]; however, in neither
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paper it is fully explored: in [1] there is no theory of contexts governing the in-
teraction of different types, and in [12], this interaction is clarified, but only at the
metalinguistic level.

Multi-type calculus for PDL. The multi-type approach has been applied to PDL
in [14]. In that setting, introducing two separate types for transitive actions and for
general actions makes it possible to overcome the big hurdle given by the fact that
the induction axiom features occurrences of the same formula in precedent and in
succedent position, which makes it is severely non amenable to the treatment in
standard display calculi. Another interesting case study is given by Parikh’s game
logic, which is ongoing work [13].

Refinements of Belnap’s conditions, and type-uniformity. The multi-type set-
ting will hopefully prove to be conceptually advantageous to achieve a better grasp
and a simpler statement of Wansing’s and Belnap’s regularity requirements (cf.
conditions C6/C7 in [28], [4, Section 2]) for the Belnap-style cut elimination, via
the notion of type-uniformity (Definition 3.1). In [3], Belnap motivates his condi-
tion C7

11 saying that “rules need not be wholly closed under substitution of struc-
tures for congruent formulas which are antecedent parts, but they must be closed
enough.” Then he explains that closed enough refers to the closure under sub-
stitution of formulas A for structures X such that a derivation is available in the
system for the sequent X ` A, in which the occurrence of A in the conclusion is
principal. The crucial observation is that, even if a system is not defined a priori
as multi-type, it can be regarded as a multi-type setting: indeed, the type of A can
be defined as consisting of all the structures X such that the shape of derivation al-
luded to above exists. Then, condition C6/C7 can be equivalently reformulated as
the requirement that rules should be closed under uniform substitution within each
type. Notice that, under the stipulations above, different types must be separated
by at least one structural rule. For instance, in the Dynamic Calculus for EAK, the
rule balance separates Fnc from Act. In conclusion, our conjecture is that Wans-
ing’s and Belnap’s conditions C6/C7 boil down to a type-uniformity requirement in
a context in which types are not given explicitly. The observations above indicate
that type-uniformity is a desirable design requirement for general dynamic calculi,
and in particular for the development of an adequate proof theory for dynamic
logics, particularly in view of a uniform path to Belnap-style cut-elimination.

Non-proliferation. Our analysis towards Belnap-style cut elimination led us to
refine and weaken various aspects of the cut elimination metatheorem. For in-
stance, the requirement of non-proliferation of parameters for quasi-properly dis-
playable multi-type calculi applies only to types the grammar of which is rich

11Recall that Belnap’s condition C7 corresponds to Wansing’s cons-regularity for formulas occur-
ring in precedent position. An analogous explanation holds of course for the ant-regularity condition
of formulas in succedent position.
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enough that allows non-trivial cut applications, that is, applications of cut the con-
clusion of which is different from both premises. The case study of EAK allows
such a simple grammar on functional actions and agents that these two types are
not subject to the restriction of non-proliferation. This in turn makes it possible
to include the swap-in rules in the calculus, in which every occurring parameter
of a type which can proliferate does indeed proliferate. Introducing some non-
trivial grammar on functional actions (e.g. sequential composition) would make
the restriction of non-proliferation applicable to this type, and hence would make
swap-in not suitable anymore.

Expanding the signature. Notwithstanding the concerns about swap-in, the multi-
type language provides the opportunity to consider various natural expansions of
the language of actions. Early on, we argued that the connective J1 which takes
formulas in both coordinate as arguments and delivers an action, has the following
natural interpretation: for all formulas A, B, the term BJ1A denotes the weakest
epistemic action γ such that, if A was true before γ was performed, then B is true
after any successful execution of γ. This connective seems particularly suited to
explore epistemic capabilities and planning.

9 Appendix

In the following subsection, we collect the reduction steps verifying that the Dy-
namic Calculus verifies condition C’8; in Section 9.2, we collect the derivations
which prove the syntactic completeness of the Dynamic Calculus w.r.t. IEAK (cf.
Section 2.2).

9.1 Cut elimination

Let us recall that C’8 only concerns applications of the cut rules in which both
occurrences of the given cut-term are non parametric. Notice that non parametric
occurrences of atomic terms of type Fm involve an axiom on at least one premise,
thus we are reduced to the following cases (the case of the constant ⊥ is symmetric
to the case of > and is omitted):

Φp ` p p ` Ψp
Φp ` Ψp  Φp ` Ψp

I ` >

... π

I ` X
> ` X

I ` X  

... π

I ` X

Notice that non parametric occurrences of any given (atomic) operational term a
of type Fnc or Ag are confined to axioms a ` a. Hence:

a ` a a ` a
a ` a  a ` a
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In each case above, the cut in the original derivation is strongly uniform by as-
sumption, and is eliminated by the transformation. As to cuts on non atomic terms,
let us restrict our attention to those cut-terms the main connective of which is
Mi, Ni , −B i, −I i for 0 ≤ i ≤ 3 (the remaining operational connectives are straight-
forward and left to the reader).

... π0

x ` a

... π1

y ` b

x1i y ` a Mi b

... π2

a1i b ` z
a Mi b ` z

x1i y ` z  

... π1

y ` b

... π0

x ` a

... π2

a1i b ` z

a ` zb∼i b

x ` zb∼i b
x1i b ` z

b ` x

a

i z

y ` x

a

i z

x1i y ` z

... π1

y ` a
1

i b
y ` a−Bi b

... π0

x ` a

... π2

b ` z
a−Bi b ` x

1

i z

y ` x

1

i z  

... π0

x ` a

... π1

y ` a

1

i b

aai y ` b

a ` b2∼i y

x ` b2∼i y

xai y ` b

... π2

b ` z

xai y ` z

y ` x

1

i z

... π0

x ` a

... π1

y ` b

xai y ` aNi b

... π2

aai b ` z
aNi b ` z

xai y ` z  

... π1

y ` b

... π0

x ` a

... π2

aai b ` z

a ` z2∼i b

x ` z2∼i b
xai b ` z

b ` x

1

i z

y ` x

1

i z

xai y ` z

... π1

y ` a

a

i b
y ` a−Ii b

... π0

x ` a

... π2

b ` z
a−Ii b ` x

a

i z

y ` x

a

i z  

... π0

x ` a

... π1

y ` a

a

i b

a1i y ` b

a ` bb∼i y

x ` bb∼i y

x1i y ` b

... π2

b ` z

x1i y ` z

y ` x

a

i z

44



In each case above, the cut in the original derivation is strongly uniform by as-
sumption, and after the transformation, cuts of lower complexity are introduced
which can be easily verified to be strongly uniform for each 0 ≤ i ≤ 3.

9.2 Completeness

To prove the completeness of the Dynamic Calculus it is enough to show that all the
axioms and rules of H.IEAK are theorems and, respectively, derived or admissible
rules of Dynamic Calculus. Below we show the derivations of the dynamic axioms.

• α M p a` (α M >) ∧ p

α ` α I ` >
α1 I ` α M > α1 p ` p

(α1 I) ; (α1 p) ` (α M >) ∧ p

α1 (I ; p) ` (α M >) ∧ p

I ; p ` α
a

(α M >) ∧ p

p ` α
a

(α M >) ∧ p

α1 p ` (α M >) ∧ p
α M p ` (α M >) ∧ p

α ` α

αa p ` p

I ` (αa p) > p

> ` (αa p) > p

(αa p) ;> ` p

α1 ((αa p) ;>) ` α M p

(α1>) ; p ` α M p

α1> ` α M p < p
α M > ` p > α M p

α M > ; p ` α M p
(α M >) ∧ p ` α M p

• α−B p a` (α M >)→ p

α ` α p ` α

a

p

α−B p ` α

1

(α

a

p)

αaα−B p ` α

a

p

I ` (αaα−B p) > α

a

p

> ` (αaα−B p) > α

a

p

(αaα−B p) ;> ` α

a

p

α1 ((αaα−B p) ;>) ` p

α−B p ;α1> ` p
α M > ` α−B p > p

α−B p ;α M > ` p
α M > ;α−B p ` p

α−B p ` α M > > p
α−B p ` (α M >)→ p

α ` α I ` >
α1 I ` α M > p ` α

1

p

(α M >)→ p ` (α1 I) > α

1

p

(α M >)→ p ` α

1

(I > p)

αa (α M >)→ p ` I > p

αa (α M >)→ p ` p

(α M >)→ p ` α

1

p
(α M >)→ p ` α−B p

• 〈α〉> a` 1α  α M > a` α M >

α ` α > ` >

α1> ` α M >

α M > ` α M >
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• α−B⊥ a` α M > → ⊥

α ` α

⊥ ` I
⊥ ` α

a

I

α−B⊥ ` α

1

(α

a

I)

αa (α−B⊥) ` α

a

I

I ` αa (α−B⊥) > α

a

I

> ` αa (α−B⊥) > α

a

I

αa (α−B⊥) ;> ` α

a

I

α1 (αa (α−B⊥) ;>) ` I

α−B⊥ ; (α1>) ` I

α−B⊥ ; (α1>) ` ⊥

α1> ` α−B⊥ > ⊥

α M > ` α−B⊥ > ⊥
α−B⊥ ;α M > ` ⊥
α M > ;α−B⊥ ` ⊥

α−B⊥ ` α M > > ⊥
α−B⊥ ` α M > → ⊥

α ` α I ` >
α1 I ` α M >

⊥ ` I
⊥ ` α

1

I

αa⊥ ` I

αa⊥ ` ⊥

⊥ ` α

1

⊥

α M > → ⊥ ` α1 I > α

1

⊥

α M > → ⊥ ` α

1

(I > ⊥)

αa (α M > → ⊥) ` I > ⊥

I;αa (α M > → ⊥) ` ⊥

I ` ⊥ < αa (α M > → ⊥)

αa (α M > → ⊥) ` ⊥

α M > → ⊥ ` α

1

⊥

α M > → ⊥ ` α−B⊥

• α M ⊥ a` ⊥

⊥ ` I
⊥ ` α

a

I

α1⊥ ` I
α M ⊥ ` I
α M ⊥ ` ⊥

⊥ ` I
⊥ ` α M ⊥

• α−B> a` >

I ` >
α−B> ` >

I ` >
αa I ` >

I ` α

1

>

> ` α

1

>

αa> ` >

> ` α

1

>

> ` α−B>

• α−B (A ∧ B) a` α−B A ∧ α−B B

α ` α

A ` A
A ; B ` A

A ∧ B ` A
α−B (A ∧ B) ` α

1

A
α−B (A ∧ B) ` α−B A

α ` α

B ` B
A ; B ` B

A ∧ B ` B
α−B (A ∧ B) ` α

1

B
α−B (A ∧ B) ` α−B B

α−B (A ∧ B) ;α−B (A ∧ B) ` α−B A ∧ α−B B
α−B (A ∧ B) ` α−B A ∧ α−B B

α ` α A ` A
α−B A ` α

1

A
αa (α−B A) ` A

α ` α B ` B
α−B B ` α

1

B
αa (α−B B) ` B

αa (α−B A) ;αa (α−B B) ` A ∧ B
αa (α−B A ;α−B B) ` A ∧ B

α−B A ;α−B B ` α

1

(A ∧ B)
α−B A ∧ α−B B ` α−B (A ∧ B)
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• α M (A ∧ B) a` α M A ∧ α M B

α ` α

A ` A
A ; B ` A

A ∧ B ` A
α1 A ∧ B ` α M A
α M (A ∧ B) ` α M A

α ` α

B ` B
A ; B ` B

A ∧ B ` B
α1 A ∧ B ` α M B
α M (A ∧ B) ` α M B

α M (A ∧ B) ;α M (A ∧ B) ` α M A ∧ α M B
α M (A ∧ B) ` α M A ∧ α M B

α ` α

A ` A
balance

α1 A ` α

1

A

αa (α1 A) ` A

B ` B
balance

α1 B ` α

1

B

αa (α1 B) ` B

αa (α1 A) ;αa (α1 B) ` A ∧ B

αa (α1 A ;α1 B) ` A ∧ B

α1 (αa (α1 A ;α1 B)) ` α M (A ∧ B)

αa (α1 A ;α1 B) ` α

a

(α M (A ∧ B))

I ` αa (α1 A ;α1 B) > α

a

(α M (A ∧ B))

αa (α1 A ;α1 B) ; I ` α

a

(α M (A ∧ B))

α1 (αa (α1 A ;α1 B)); I) ` α M (A ∧ B)
con j

(α1 A ;α1 B);α1 I ` α M (A ∧ B)

α1 A ; (α1 B;α1 I) ` α M (A ∧ B)

α1 B;α1 I ` α1 A > α M (A ∧ B)

α1 (B; I) ` α1 A > α M (A ∧ B)

B; I ` α

a

(α1 A > α M (A ∧ B))

I ` B > (α

a

(α1 A > α M (A ∧ B)))

B ` α

a

(α1 A > α M (A ∧ B))

α1 B ` α1 A > α M (A ∧ B)

α M B ` α1 A > α M (A ∧ B)

α1 A ;α M B ` α M (A ∧ B)

α1 A ` α M (A ∧ B) < α M B
α M A ` α M (A ∧ B) < α M B

α M A ;α M B ` α M (A ∧ B)
α M A ∧ α M B ` α M (A ∧ B)

• α M (A ∨ B) a` α M A ∨ α M B

α ` α A ` A
α1 A ` α M A

A ` α

a

(α M A)

α ` α B ` B
α1 B ` α M B

B ` α

a

(α M B)

A ∨ B ` α

a

(α M A);α

a

(α M B)

A ∨ B ` α

a

(α M A ;α M B)

α1 A ∨ B ` α M A ;α M B
α M (A ∨ B) ` α M A ;α M B
α M (A ∨ B) ` α M A ∨ α M B

α ` α

A ` A
A > A ` B

A ` A ; B
A ` A ∨ B

α1 A ` α M (A ∨ B)
α M A ` α M (A ∨ B)

α ` α

B ` B
B < B ` A

B ` A ; B
B ` A ∨ B

α1 B ` α M (A ∨ B)
α M B ` α M (A ∨ B)

α M A ∨ α M B ` α M (A ∨ B) ;α M (A ∨ B)
α M A ∨ α M B ` α M (A ∨ B)
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• α−B (A ∨ B) a` (α M >)→ (α M A ∨ α M B)

α ` α

α ` α A ` A
α1 A ` α M A

A ` α

a

(α M A)

α ` α B ` B
α1 B ` α M B

B ` α

a

(α M B)

A ∨ B ` α

a

(α M A );α

a

(α M B)

A ∨ B ` α

a

(α M A ;α M B)

α1 (A ∨ B) ` α M A ;α M B

α1 (A ∨ B) ` α M A ∨ α M B

A ∨ B ` α

a

(α M A ∨ α M B)

α−B (A ∨ B) ` α

1

(α

a

(α M A ∨ α M B))

αa (α−B (A ∨ B)) ` α

a

(α M A ∨ α M B)

I ` αa (α−B (A ∨ B)) > α

a

(α M A ∨ α M B)

(αa (α−B (A ∨ B))) ; I ` α

a

(α M A ∨ α M B)

α1 ((αa (α−B (A ∨ B))) ; I) ` α M A ∨ α M B
conj0M

(α−B (A ∨ B)) ;α1 I ` α M A ∨ α M B

α1 I ` α−B (A ∨ B) > α M A ∨ α M B

I ` α

1

(α−B (A ∨ B) > α M A ∨ α M B)

> ` α

1

(α−B (A ∨ B) > α M A ∨ α M B)

α1> ` α−B (A ∨ B) > α M A ∨ α M B
α M > ` α−B (A ∨ B) > α M A ∨ α M B

(α−B (A ∨ B)) ; (α M >) ` α M A ∨ α M B
(α M >) ; (α−B (A ∨ B)) ` α M A ∨ α M B

(α−B (A ∨ B)) ` (α M >) > α M A ∨ α M B
(α−B (A ∨ B)) ` (α M >)→ (α M A ∨ α M B)

α ` α I ` >
α1 I ` α M >

A ` A
α1 A ` α

1

A

α M A ` α

1

A

B ` B
α1 B ` α

1

B

α M B ` α

1

B

α M A ∨ α M B ` α

1

A ;α

1

B

α M A ∨ α M B ` α

1

(A ; B)

αa (α M A ∨ α M B) ` A ; B

αa (α M A ∨ α M B) ` A ∨ B

α M A ∨ α M B ` α

1

(A ∨ B)

(α M >)→ (α M A ∨ α M B) ` α1 I > α

1

(A ∨ B)

(α M >)→ (α M A ∨ α M B) ` α

1

(I > (A ∨ B))

αa ((α M >)→ (α M A ∨ α M B)) ` I > (A ∨ B)

I ;αa ((α M >)→ (α M A ∨ α M B)) ` A ∨ B

I ` (A ∨ B) < αa ((α M >)→ (α M A ∨ α M B))

αa ((α M >)→ (α M A ∨ α M B)) ` A ∨ B

(α M >)→ (α M A ∨ α M B) ` α

1

(A ∨ B)
(α M >)→ (α M A ∨ α M B) ` α−B (A ∨ B)

• α M (A→ B) a` (α M >) ∧ (α M A→ α M B)

α ` α I ` >
α1 I ` α M >

A ` A
α1 A ` α

1

A

α M A ` α

1

A

αa (α M A) ` A

α ` α B ` B
α1 B ` α M B

B ` α

a

(α M B)

A→ B ` (αa (α M A)) > (α

a

(α M B))

A→ B ` α

a

(α M A > α M B)

α1 (A→ B) ` α M A > α M B

α1 (A→ B) ` α M A→ α M B

(α 1 I) ;α1 (A→ B) ` (α M >) ∧ (α M A→ α M B)

α 1 (I ; A→ B) ` (α M >) ∧ (α M A→ α M B)

I ; A→ B ` α

a

((α M >) ∧ (α M A→ α M B))

I ` (α

a

((α M >) ∧ (α M A→ α M B))) < (A→ B)

A→ B ` α

a

((α M >) ∧ (α M A→ α M B))

α 1 (A→ B) ` (α M >) ∧ (α M A→ α M B)
α M (A→ B) ` (α M >) ∧ (α M A→ α M B)

α ` α A ` A
α1 A ` α M A

B ` B
α1 B ` α

1

B

α M B ` α

1

B

α M A→ α M B ` α1 A > α

1

B

α M A→ α M B ` α

1

(A > B)

αa (α M A→ α M B) ` A > B

αa (α M A→ α M B) ` A→ B

α1 (αa (α M A→ α M B)) ` α M (A→ B)

αa (α M A→ α M B) ` α

a

(α M (A→ B))

I ` αa (α M A→ α M B) > α

a

(α M (A→ B))

αa (α M A→ α M B) ; I ` α

a

(α M (A→ B))

α1 (αa (α M A→ α M B) ; I) ` α M (A→ B)

α M A→ α M B ; (α1 I) ` α M (A→ B)

α1 I ` α M A→ α M B > α M (A→ B)

I ` α

a

(α M A→ α M B > α M (A→ B))

> ` α

a

(α M A→ α M B > α M (A→ B))

α1> ` α M A→ α M B > α M (A→ B)
α M > ` α M A→ α M B > α M (A→ B)
α M A→ α M B ;α M > ` α M (A→ B)
α M > ;α M A→ α M B ` α M (A→ B)
α M > ∧ (α M A→ α M B) ` α M (A→ B)

48



• α−B (A→ B) a` α M A → α M B

α ` α

A ` A
α1 A ` α

1

A

αa (α1 A) ` A

α ` α B ` B
α1 B ` α M B

B ` α

a

(α M B)

A→ B ` αa (α1 A) > α

a

(α M B)

A→ B ` α

a

(α1 A > α M B)

α−B (A→ B) ` α

1

(α

a

(α1 A > α M B))

αa (α−B (A→ B) ` α

a

(α1 A > α M B)

I ` αa (α−B (A→ B) > α

a

(α1 A > α M B)

αa (α−B (A→ B) ; I ` α

a

(α1 A > α M B)

α1 (αa (α−B (A→ B) ; I) ` α1 A > α M B
con j

α−B (A→ B) ; (α1 I) ` α1 A > α M B

(α1 I) ;α−B (A→ B) ` α1 A > α M B

α1 A ; ((α1 I) ;α−B (A→ B)) ` α M B

(α1 A ; (α1 I)) ;α−B (A→ B) ` α M B

α1 A ; (α1 I) ` α M B < α−B (A→ B)

α1 (A ; I) ` α M B < α−B (A→ B)

A ; I ` α

a

(α M B < α−B (A→ B))

I ` A > (α

a

(α M B < α−B (A→ B)))

A ` α

a

(α M B < α−B (A→ B))

α1 A ` α M B < α−B (A→ B)
α M A ` α M B < α−B (A→ B)
α M A ` α M B < α−B (A→ B)

α M A ;α−B (A→ B) ` α M B
α−B (A→ B) ` α M A > α M B
α−B (A→ B) ` α M A → α M B

α ` α A ` A
α1 A ` α M A

α ` α B ` B
α1 B ` α

1

B

α M B ` α

1

B

α M A→ α M B ` α1 A > α

1

B

α M A→ α M B ` α

1

(A > B)

αa (α M A→ α M B) ` A > B

αa (α M A→ α M B) ` A→ B

α M A→ α M B ` α

1

A→ B
α M A→ α M B ` α−B (A→ B)
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• 1α ∧
∨
{〈a〉〈β〉A |αaβ} ` 〈α〉〈a〉A (α M > ) ∧ (a M ((aNα) M A)) ` α M (a M A)

α ` α

a ` a A ` A
a1 A ` a M A

α1 (a1 A) ` α M (a M A)
a1 A ` α

a

(α M (a M A))
A ` a

a

(α

a

(α M (a M A)))
swap-inR

A ` (aaα)

a

(a

a

((α1 I) > (α M (a M A))))
(aaα)1 A ` a

a

((α1 I) > (α M (a M A)))
aaα ` (a

a

((α1 I) > (α M (a M A)))) a A
aNα ` (a

a

((α1 I) > (α M (a M A)))) a A
(aNα) M A ` a

a

((α1 I) > (α M (a M A)))
a1 ((aNα) M A) ` (α1 I) > (α M (a M A))
a M ((aNα) M A) ` (α1 I) > (α M (a M A))

(α1 I); (a M ((aNα) M A)) ` α M (a M A)
α1 I ` (α M (a M A)) < (a M ((aNα) M A))

I ` α

a

((α M (a M A)) < (a M ((aNα) M A)))
> ` α

a

((α M (a M A)) < (a M ((aNα) M A)))
α1> ` (α M (a M A)) < (a M ((aNα) M A))
α M > ` (α M (a M A)) < (a M ((aNα) M A))

(α M >); (a M ((aNα) M A)) ` α M (a M A)
(α M >) ∧ (a M ((aNα) M A)) ` α M (a M A)

• [α][a]A ` Pre(α)→
∧
{[a][β]A |αaβ} α−B (a−B A) ` (α M >)→ (a−B ((aNα)−B A))

α ` α

a ` a A ` A
a−B A ` a

1

A
α−B (a−B A) ` α

1

(a

1

A)
αa (α−B (a−B A)) ` a

1

A
aa (αa (α−B (a−B A))) ` A

swap-inL
(aaα)a (aa ((α1 I); (α−B (a−B A)))) ` A

aaα ` A 1 (aa ((α1 I); (α−B (a−B A))))
aNα ` A 1 (aa ((α1 I); (α−B (a−B A))))

(aNα)a (aa ((α1 I); (α−B (a−B A)))) ` A
aa ((α1 I); (α−B (a−B A))) ` (aNα)

1

A
aa ((α1 I); (α−B (a−B A))) ` (aNα)−B A

(α1 I); (α−B (a−B A)) ` a

1

((aNα)−B A)
(α1 I); (α−B (a−B A)) ` a−B ((aNα)−B A)

α1 I ` (a−B ((aNα)−B A)) < (α−B (a−B A))
I ` α

a

((a−B ((aNα)−B A)) < (α−B (a−B A)))
> ` α

a

((a−B ((aNα)−B A)) < (α−B (a−B A)))
α1> ` (a−B ((aNα)−B A)) < (α−B (a−B A))
α M > ` (a−B ((aNα)−B A)) < (α−B (a−B A))

(α M >); (α−B (a−B A)) ` a−B ((aNα)−B A)
(α−B (a−B A)) ` (α M >) > (a−B ((aNα)−B A))
(α−B (a−B A)) ` (α M >)→ (a−B ((aNα)−B A))
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• 〈α〉[a]A ` Pre(α) ∧
∧
{[a][β]A |αaβ} α M (a−B A) ` (α M >) ∧ (a−B ((aNα)−B A))

α ` α I ` >
α1 I ` α M >

a ` a A ` A
a−B A ` a

1

A
balance

α1 (a−B A) ` α
1

(a

1

A)

αa (α1 (a−B A)) ` a
1

A

aa (αa (α1 (a−B A))) ` A
swap-inL

(aaα)a (aa ((α1 I); (α1 (a−B A)))) ` A

aaα ` A a (aa ((α1 I); (α1 (a−B A))))

aNα ` A a (aa ((α1 I); (α1 (a−B A))))

(aNα)a (aa ((α1 I); (α1 (a−B A)))) ` A

aa ((α1 I); (α1 (a−B A))) ` (aNα)

1

A

aa ((α1 I); (α1 (a−B A))) ` (aNα)−B A

(α1 I); (α1 (a−B A)) ` a

1

((aNα)−B A)

(α1 I); (α1 (a−B A)) ` a−B ((aNα)−B A)
reduce′L

α1 (a−B A) ` a−B ((aNα)−B A)

(α1 I); (α1 (a−B A)) ` (α M >) ∧ (a−B ((aNα)−B A))
reduce′L

α1 (a−B A) ` (α M >) ∧ (a−B ((aNα)−B A))
α M (a−B A) ` (α M >) ∧ (a−B ((aNα)−B A))

• Pre(α) ∧
∧
{[a][β]A |αaβ} ` 〈α〉[a]A (α M >) ∧ a−B ((aNα)−B A) ` α M (a−B A)

α ` α

a ` a

a ` a α ` α

aaα ` aNα A ` A

(aNα)−B A ` (aaα)

1

A

a−B ((αNα)−B A) ` a

1

((aaα)

1

A)

aa (a−B ((αNα)−B A)) ` (aaα)

1

A

(aaα)a (aa (a−B ((αNα)−B A))) ` Aswap-outL
aa (αa (a−B ((αNα)−B A))) ` A

αa (a−B ((αNα)−B A)) ` a

1

A

αa (a−B ((αNα)−B A)) ` a−B A

I ` αa (a−B ((αNα)−B A)) > a−B A

αa (a−B ((αNα)−B A)) ; I ` a−B A

α1 (αa (a−B ((αNα)−B A)) ; I) ` α M (a−B A)
con j0M

a−B ((αNα)−B A) ; (α1 I) ` α M (a−B A)

α1 I ` a−B ((αNα)−B A) > α M (a−B A)

I ` α

a

(a−B ((αNα)−B A) > α M (a−B A))

> ` α

a

(a−B ((αNα)−B A) > α M (a−B A))

α1> ` a−B ((αNα)−B A) > α M (a−B A)
α M > ` a−B ((αNα)−B A) > α M (a−B A)

a−B ((αNα)−B A) ;α M > ` α M (a−B A)
(α M >) ; a−B ((aNα)−B A) ` α M (a−B A)

(α M >) ∧ a−B ((aNα)−B A) ` α M (a−B A)
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10 Cut Elimination for the Dynamic Calculus for EAK

Let us recall that C’8 only concerns applications of the cut rules in which both
occurrences of the given cut-term are non parametric. Notice that non parametric
occurrences of atomic terms of type Fm involve an axiom on at least one premise,
thus we are reduced to the following cases (the case of the constant ⊥ is symmetric
to the case of > and is omitted):

Φp ` p p ` Ψp
Φp ` Ψp  Φp ` Ψp

I ` >

... π

I ` X
> ` X

I ` X  

... π

I ` X

Notice that non parametric occurrences of any given (atomic) operational term a
of type Fnc or Ag are confined to axioms a ` a. Hence:

a ` a a ` a
a ` a  a ` a

In each case above, the cut in the original derivation is strongly uniform by as-
sumption, and is eliminated by the transformation. As to cuts on non atomic terms,
let us restrict our attention to those cut-terms the main connective of which is
Mi, Ni , −B i, −I i for 0 ≤ i ≤ 3 (the remaining operational connectives are straight-
forward and left to the reader).

The following table disambiguates the various structural connectives occurring
in the reduction steps represented below:

i = 0 i = 1 i = 2 i = 3

1 1

0

1

1

1

2 ∼4 3

a a

0

a

1

a

2 ∼d 3

1 2∼ 0 1 1 2∼ 2 2∼ 3

a b∼ 0 a 1 b∼ 2 b∼ 3

... π0
x ` a

... π1

y ` b
x1i y ` a Mi b

... π2

a1i b ` z
a Mi b ` z

x1i y ` z  

... π1

y ` b

... π0
x ` a

... π2

a1i b ` z
a ` z ai b

x ` z ai b
x1i b ` z

b ` x

a

i z
y ` x

a

i z
x1i y ` z
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... π1

y ` a

1

i b
y ` a−Bi b

... π0
x ` a

... π2

b ` z
a−Bi b ` x

1

i z
y ` x

1

i z  

... π0
x ` a

... π1

y ` a

1

i b
aai y ` b

a ` b 1i y
x ` b 1i y

xai y ` b

... π2

b ` z
xai y ` z

y ` x

1

i z

... π0
x ` a

... π1

y ` b
xai y ` aNi b

... π2

aai b ` z
aNi b ` z

xai y ` z  

... π1

y ` b

... π0
x ` a

... π2

aai b ` z
a ` z 1i b

x ` z 1i b
xai b ` z

b ` x

1

i z
y ` x

1

i z
xai y ` z

... π1

y ` a

a

i b
y ` a−Ii b

... π0
x ` a

... π2

b ` z
a−Ii b ` x

a

i z
y ` x

a

i z  

... π0
x ` a

... π1

y ` a

a

i b
a1i y ` b

a ` b ai y
x ` b ai y

x1i y ` b

... π2

b ` z
x1i y ` z

y ` x

a

i z

In each case above, the cut in the original derivation is strongly uniform by as-
sumption, and after the transformation, cuts of lower complexity are introduced
which can be easily verified to be strongly uniform for each 0 ≤ i ≤ 3.
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[16] Rajeev Goré. Dual intuitionistic logic revisited. In Roy Dyckhoff, editor,
Automated Reasoning with Analytic Tableaux and Related Methods, volume
1847 of Lecture Notes in Computer Science, pages 252–267. Springer, 2000.

[17] Giuseppe Greco, Alexander Kurz, and Alessandra Palmigiano. Dynamic
epistemic logic displayed. In Huaxin Huang, Davide Grossi, and Olivier Roy,
editors, Proceedings of the 4th International Workshop on Logic, Rationality
and Interaction (LORI-4), volume 8196 of LNCS, 2013.

[18] Alexander Kurz and Alessandra Palmigiano. Epistemic updates on algebras.
Logical Methods in Computer Science, 2013. arXiv:1307.0417.

[19] Carsten Lutz. Complexity and succinctness of public announcement logic.
AAMAS ’06 Proceedings or the fifth international joint conference on Au-
tonomous agents and multiagent system, pages 137–143, 2006.

[20] Minghui Ma, Alessandra Palmigiano, and Mehrnoosh Sadrzadeh. Al-
gebraic semantics and model completeness for intuitionistic public
announcement logic. Annals of Pure and Applied Logic, 2013.
http://dx.doi.org/10.1016/j.apal.2013.11.004.

[21] Marc Pauly and Rohit Parikh. Game logic - an overview. Studia Logica,
75(2):165–182, 2003.

[22] Jan Plaza. Logics of public communications. Synthese, 158(2):165–179,
2007.

[23] Francesca Poggiolesi. Gentzen Calculi for Modal Propositional Logic.
Trends in logic. Springer, 2010.

[24] Vaughan Pratt. Action logic and pure induction. In Proceedings JELIA 1990,
volume LNCS 478, pages 97–120. Springer, 1991.

[25] Greg Restall. An Introduction to Substructural Logics. Routledge, London,
2000.
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