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Abstract

The aim of the course is to provide a first introduction to Stone duality. We prove
two classical theorems, Stone’s theorem representing Boolean algebras as topological
spaces and Goldblatt’s theorem representing modal algebras (Boolean algebras with
operators) as topological Kripke frames (descriptive general frames).

Note: I will produce a (slightly) revised version of the notes shortly after the course (send
me an email if you are interested). Any help in improving them is more than welcome! I
hope to replace them then later by a more complete and self-contained version.

1 Introduction

The aim of this course is to give a basic introduction to Stone duality in Section 2. In
Section 3, we make use of coalgebras (and the duality of algebras and coalgebras) in order to
explain how Stone duality applies to modal logics. Two appendices recall some background
on coalgebras (Appendix A) and modal logic (Appendix B).

In the remainder of the introduction we summarise the framework in which the approach
of these notes applies. We only consider modal logics that are determined by adding some
(possibly n-ary) modal operators to a given propositional logic.

We assume that this propositional logic comes with an associated category of algebras
A having free algebras and providing the algebraic semantics of the propositional logic.
An element of an algebra corresponds to an equivalence class of formulae under logical



equivalence. For example, for classical propositional logic A will be the category BA of
Boolean algebras.

We also assume that there is a category X of spaces X providing a set-based semantics
of the propositional logic in which formulae correspond to subsets of X. Algebraic and
set-based semantics are related by two (contravariant) functors

X~ A

S

P assigns to a space X the algebra of predicates over X; PX can also be understood as
the logic of X. S assigns to an algebra A its space of points. SA can be understood as the
canonical model of the logic A. The elements of A correspond to subsets of (ie predicates
over) SA and the points of SA are given by certain complete theories (‘states of affairs’)

of A.

That X and A are dual categories means that PS and SP are (up to natural isomor-
phism) the identities. Examples of such Stone dualities are given by the pairs of categories
described informally by (sets, complete atomic Boolean algebras), (Stone spaces, Boolean
algebras), (sober spaces, spatial frames), (spectral spaces, bounded distributive lattices),
see eg [19, 2| for details and more examples.

Important for us is that, in logical terms, Stone duality implies the following three prop-
erties:

e the logic is sound
e the logic is complete

e the logic is expressive, or, equivalently, the semantic is fully abstract

The picture can be extended from categories X and A to endofunctors on these categories.
Suppose we have a functor T on a category X. We say that the functor L on A is the
Stone dual of T if the diagram

x4

T L

P |
commutes (up to natural isomorphism).
In that case, the categories of L-algebras and T-coalgebras are also dual. Here, L encodes
the modal operators and their axiomatisation of a modal logic built on top of the propo-
sitional logic corresponding to A. T-coalgebras provide the canonical transition system

semantics for this modal logic. As above, due to the duality, one immediately obtains
soundness, completeness, and full abstraction.



Literature

Stone duality was introduced by Stone [36]. The application of Stone duality to modal
logic goes back to J’onsson and Tarski [20, 21] and then Goldblatt [14]. The idea of relating
type constructors on algebras (see the L above) and topological spaces (see the T above)
is from Abramsky’s Domain Theory in Logical Form [1].

Compared to [1], the approach of Section 3 is a simplification in the sense that it only
deals with endofunctors T' (thus excluding function space) and a generalisation in that it
works for a larger class of topological spaces. Moreover, the models we are interested in
are not only solutions to recursive domain equations (final coalgebras) but any coalgebras.
Compared to [14], we use the duality of algebras and coalgebras to lift the Stone duality
from Boolean logic to modal logic.

The main reference for Stone duality is Johnstone’s book on Stone Spaces [19] which also
provides detailed historical information. The handbook article [2| covers the topic from
the point of view of domain theory.

I know of three introductory textbooks on the subject, all of which I find very helpful and
complementing each other: Vickers [39], Davey and Priestley [11], Brink and Rewitzky [8].
A further interesting source is Bonsangue’s thesis 7] which extends the duality between
sober spaces and spatial frames to a duality for all TO-spaces and discusses applications to
the semantics of programming languages.

My own interest in the subject is motivated by investigating the relationship between
coalgebras and modal logic. The standard reference on coalgebras is Rutten’s [33]. Recent
textbooks on modal logic include [9, 22, 6]. Coalgebras and modal logic has attracted
the attention of several researcher, see Moss [29] for the original paper and eg [32, 18, 4,
31, 16, 10] for further work. The course notes [26] provide an introduction and overview.
[25, 30, 24, 27] is recent work building on the ideas explained in Section 3.



2 Stone Duality

2.1 Representation of Boolean Algebras

Definition 2.1 (Distributive lattices, Boolean algebras). A lattice has constants 0, 1 and
binary operators V, A. Each of V, A is associative, commutative and idempotent, and 0, 1
are the neutral elements for V, A, respectively. Moreover,

aV(aNb)=a aA(aVd)=a
A lattice is distributive if it satisfies
aN(bVe)=(aNnb)V(aAc) aV(bAc)=(aVb)A(aVec)
A Boolean algebra is a distributive lattice with an additional unary operation — such that
aN—-a=0 aV-a=1

The categories of distributive lattices and Boolean algebras are denoted by DL and BA,
respectively. The set of equations defining Boolean algebras is denoted by Ega.

Remark 2.2. A lattice can also be defined as a poset that has finite joins (least upper
bounds) and finite meets (greatest lower bounds). The definition above has the advantage
of exhibiting distributive lattices as algebras given by a signature and equations. The poset
order can be recovered viaa < b < aAb=a.

The prototypical example of Boolean algebras is the following.

Definition 2.3. A field of sets is a subset A C PX for some set X such that A is closed
under finite unions, finite intersections and complements. In other words, (A, ), X, U, N, —)
is a Boolean algebra.

That the abstract! equations defining Boolean algebras (Definition 2.1) indeed completely
capture the properties of union, intersection and complement is the content of the following
theorem.

Theorem 2.4. Any boolean algebra is isomorphic to a field of sets.

Given a boolean algebra A, we have to describe an isomorphic algebra whose elements are
subsets of a set (of ‘points’) Pt(A). The crucial question is how to find this set of points
Pt(A). Before we do this, it may be helpful to look, for additional motivation, at a similar,
but perhaps more intuitive problem.

L Abstract’ means here that even though we might want to think of the elements of a Boolean algebra
as sets, the elements of these sets do not play a role in the axiomatisation of Boolean algebras.



Example 2.5 (Constructing time-points from time-intervals).

The set of points Pt(A) will consist of subsets of A, or, equivalently, of functions A — 2.
Thinking about which functions A — 2 we should consider as points (in terms of the
example above: not all sets of intervals are good), there is one obvious choice. Indeed, 2 is
not only a set, but also a boolean algebra, denoted 2. This suggests to define

Pt(A) = BA(A,2).
Each element a of A can be represented by a C Pt(A)
a={p e Pt(A) | pla) = 1}.

Note that the idea that the point p satisfies the ‘predicate’ a can now be expressed naturally
as p € a. To finish the construction of the field of sets A corresponding to the boolean
algebra A we let

A= {a]|a€ A}

and the boolean operators be the set-theoretic ones. That A is indeed isomorphic to A
depends on the following

Lemma 2.6. The map

(1) : A —s PPt(A)
a +— a

15 an injective boolean algebra morphism.

2.2 Duality for Finite Boolean Algebras

Fin denotes the category of finite sets and functions.

Theorem 2.7. The categories Fin°® and BAg, are equivalent.

Proof. Homework 1. Hint: Every finite Boolean algebra is atomic, that is, every element
is a join of atoms (where a is an atom if 0 < b <a = b=0). O

2.3 The Logical Interpretation of the Representation Theorem



F

propositional logic is algebraisable

EBA F Y = 1
soundness and completeness of equational logic
BAE =1

representation theorem

FieldOfSets = ¢ =1

If we don’t want to take the set-theoretic interpretation of the operators as our semantics
but prefer to rely on the usual truth table definition, we can continue:

FieldOfSets = ¢ =1
every set-algebra is a subalgebra of a product of 2s

2F

‘truth-table’ definition of =

F o

2.4 Stone Duality: the Topological Interpretation of the Repre-
sentation Theorem

In this section we sharpen the represenation theorem to a duality between the category of
Boolean algebras BA and a certain category of topological the spaces, the category Stone
of Stone spaces.

First, we describe the category RBA (represented boolean algebras which is not standard
terminology) that consists of those fields of sets that arise as representations of Boolean
algebras.

Definition 2.8 (RBA). RBA consists of objects (X, A) where X is a set and A C PX is
a Boolean subalgebra of PX. Moreover, (X, A) has to be

1. differentiated, that is, for all x # 2’ in X there is a in A containing z but not 2/,

2. compact, that is, if | J,.; a; = X then there is a finite subset .J of I such that (J;.; a; =
X.

A morphism f : (X, A) — (Y, B) is a function f : X — Y such that f~1(b) € A for all
b € B (in other words, f~! is a Boolean algebra morpism B — A).



In this terminology, the representation theorem gives us a contravariant functor

S : BA — RBA
A (Pt(A), A)

which together with the contravariant functor

P:RBA — BA

(X,;A)— A
and the natural transformations

pa:A— A

a — a
and
O(X,A) * (X7 A) — (Pt(A),A)
r — p,={a€A|lxe€a}

forms an adjunction (Check: Spa o 054 = idga, Pox.a o ppix,a) = idp(x,a)). Moreover

this adjunction is a duality (or, dual equivalence) because the natural transformations are
isomorphisms. To summarise:

Proposition 2.9. The categories BA and RBA are dually equivalent. The duality is induced
by the contravariant functor BA — RBA mapping a Boolean algebra to its set-theoretic
representation.

This is essentially the duality theorem we have been aiming for. To make the connection
with topology we just have to note that represented Boolean algebras are nothing but
Stone spaces in disguise.

Definition 2.10 (Stone space). A toplogical space is a Stone space if it is Hausdorff,
compact, and has a basis of clopens. Stone is the category of Stone spaces and continuous
maps.

Given (X, A) in RBA, we let OX be the closure of A under arbitrary unions. This is
Hausdorff since (X, A) is differentiated, compact since (X, A) is compact and has a basis
of clopens because A is a Boolean algebra. That, conversely, every Stone spaces arises in
this way depends on the following lemma.

Lemma 2.11. If a topological space is compact and has a basis A of clopens that is closed
under Boolean operations, then A contains all clopens.



In other words, in the presence of compactness, there is only one basis of clopens that
is a Boolean algebra under the set-theoretic operations. Compactness is essential here.
For example, the topological space (N, PN) has two different such basises of clopens, one
being PN itself and the other consisting of the finite subsets and their complements. As a
corollary to the lemma we get the next two statements.

Proposition 2.12. Stone and RBA are (concretely) isomorphic categories.

Theorem 2.13 (Stone duality for Boolean algebras). Stone and BA are dual categories.

Proof. Immediate from Propositions 2.9 and 2.12. ]

2.5 Stone Duality for Distributive Lattices

Definition 2.14 (spectral space). A toplogical space (X, 0X) is a spectral space if it is
sober, each open is a union of compact opens, and the collection of all compact opens forms
a distributive lattice. Spec is the category of spectral spaces and those continuous maps
that preserve compact opens.

Theorem 2.15 (Stone duality for distributive lattices). Spec and DL are dual categories.

Proof. Homework 2. Follows the same lines as layed out for Boolean algebras. ]



3 Stone duality and modal logic

As explained in the introduction, the idea is to extend a Stone duality

X~ A

S

for a basic propositional logic to a duality for a modal logic via two dual functors

xX-L2. 4

o

X~
The L-algebras Alg(L) describe (the algebraic semantics of) the modal logic and the T-
coalgebras describe the (relational or coalgebraic) semantics of the modal logic.

The duality amounts to saying that the logic is sound and complete and that the semantics
is fully abstract (or that the logic is expressive up to bisimulation).

3.1 Algebraisation of modal logic

Abstract algebraic logic associates to each logic a canonical class of algebras [13]. Here we
only look at one example, namely the (basic) modal logic ML (see Appendix B). ML is
algebraisable in the following sense.

There is a signature ¥ (Boolean operations plus one unary operator O) and a set of equa-
tions F (O preserves finite meets) and there are (definable) operators 1 and <+ such that

Freyp © Ega+ElFerp=1 (1)
Egp+Ereco=v% SFypc ot (2)

Now define a modal algebra? as a set of modal formulae closed under Boolean and modal
operators and quotiented by logical equivalence (two terms ¢ and v are logically equivalent
iff Fre @ <> 9 (Exercise: check that logical equivalence is a congruence). It now follows
from (1) and (2) that modal algebras are precisely the Y-algebras satisfying the equations
EBA and F.

The fact that the axioms of modal logic are only of ‘depth one’ corresponds to the fact
that modal algebras are algebras for a functor on Boolean algebras. For details of how to
represent algebras by generators and relations see [39].

2Also known as Boolean algebra with operator (BAO).



Proposition 3.1. The category of modal algebras is isomorphic to the category of algebras
for the functor

L:BA — BA

that maps a Boolean algebra A to the free Boolean algebra generated by {Oa : a € A}
quotiented by the smallest congruence containing (01,1) and (DaAOb,O(aAb), (a,b € A).

3.2 From algebraic to coalgebraic semantics

The functor dual to L is known as Vietoris functor, or, in domain theory, as the Plotkin
powerdomain.

Definition 3.2. Given a Stone space X, we define VX as the collection of closed subsets
of X. The topology on VX is the topology generated by all Da = {b € VX | b C a},
a€ A

Proposition 3.3. The functor L from Proposition 3.1 is dual to V.

Proof. Homework: Complete the proof from the lecture. ]
Corollary 3.4. The category of L-algebras is dual to the category of V-coalgebras.

This entails Goldblatt’s duality between modal algebras and descriptive general frames as
follows.

Definition 3.5. A modal algebra is a Boolean algebra with an additional finite-meet
preserving operation (usually denoted O).

Definition 3.6. A general frame is a structure (X, R, A) such that (X, R) is a Kripke
frame and A is a collection of so-called admissible subsets of X that is closed under the
boolean operations and under the operation Og : PX — PX given by: Og(Y) = {z € X |
Rxy = yeY}.

A general frame (X, R, A) is called differentiated if for all distinct s1,s2 € X there is a
‘witness’ a € A such that s; € a while sy &€ a; tight if whenever t is not an R-successor
of s, then there is a ‘witness’ a € A such that s € Og(a) while ¢t ¢ a; and compact if
(Ao # 0 for every subset Ay of A which has the finite intersection property. A general
frame is descriptive if it is differentiated, tight and compact.

A general frame morphism f : (X, R, A) — (X',R',A’) is a function X — X’ whose
graph is a bisimulation between (X, R) and (X', R') and whose inverse image function is a
Boolean algebra morphism A" — A.

Theorem 3.7 (Goldblatt). The categories of modal algebras and descriptive general frames
are dually equivalent.

10



Proof. Homework. The hint is of course: Show that the category of modal algebras is
isomorphic to the category of L-algebras and that the category of descpriptive general
frames is isomorphic to the category of V-coalgebras. ]

11



4 Homeworks

Choose one of the homeworks.? 2.15 is probably the most difficult because the step from
Boolean algebras to distributive lattices needs some adjustments. 3.7 shouldn’t be too
difficult since it needs not much more than unfolding the definitions. On the other hand it
is a good exercise since it involves most of the notions presented in the course, in particular
it will help to understand the definition of the functor L. 2.7 is a classic that is worth doing
anyway. (What is the analogue for distributive lattices?) Finally, 3.3 is also worth doing
(note that it essentially amounts to proving completeness of modal logic).

3Numbers refer to the theorems whose missing proofs you are asked to supply.

12



A Algebras and Coalgebras for a Functor

This is an abbreviated version of Section 2 in [26].

Definition A.1. Given a category X, called the base category, and a functor T': X — X,
a T-coalgebra (X, ¢) is given by an arrow £ : X — TX in X'. A morphism between two
coalgebras f : (X,€&) — (X', &) is an arrow f in X such that o f =T f o ¢&:

§

X TX
f rf
X —— X

The category of coalgebras and morphisms is denoted by Coalg(T).

We will explain in more detail what in means for the signature to be a functor. Assume
X = Set. Then we have functors as follows (let C' € Set and f: X — Y € Set):

T TX Tf

C C ide : C — C

d | X f

()¢ | x¢ O XC=Y”
g fog

We overloaded notation by denoting with C' the set as well as the constant functor mapping
any set to C. idc denotes the identity map on C' and X¢ is function space.

From these functors, we can build more interesting ones, using x and +, like eg T X =
(E+ A x X)!. * To make this precise, we note that x and + are functors as well. Their
action on functions f; : X; — Yy, fo : Xo — Y5 is the following:

4A coalgebra X — (E + A x X)! can be understood as mapping a state # € X and an input i € I to
either an exception e € F or an output a € A and a successor state z’ € X.

13



it Xi+Xo =Y +Y,
-+ — ZL‘GXl)—)fl(l')
SL’EXQHfQ(SL’)

JiXx fa: Xix Xy =YV XY,
(z1,29) = (f1(w1), fo(22))

It is perhaps not worth looking at these definitions in detail. There are no reasonable
alternatives anyway. But these definitions show that any expression build from constants,
identity, exponentiation with a constant, 4+, and X gives rise to a functor (this is due to
the fact that the composition of functors is a functor).

Another important example of a functor is the powerset functor P that allows to model
non-determinism:

T TX Tf

Pf:PX —>PY

Pl{W:WcCX} W s f(W) = {f(z): 2 € W}

We next characterise morphisms of P-coalgebras. Recall that we can write a P-coalgebra
(X&) as (X,R)with RC X x X andz Ry & y € {(x).

Proposition A.2. Let (X, R) and (X', R') be two P-coalgebras. A function f : X — X'

1s a P-coalgebra morphism iff

v Ry = f(z) R f(y) (3)

f@) Ry = yeX. xRy& fly) =y (4)

Proof. The commuting square defining coalgebra morphisms translates into the condition
that for all z € X it holds {v' : f(z) R' v} = {f(y) : ® R y}. “D”is (3) and “C” is
(4). O

Note that (3) says that f is a graph morphism. It expresses that (X', R, f(x)) simulates
(X, R,z). (4) is the converse stating that (X, R, x) simulates (X', R', f(x)).

Definition A.3 (Behavioural equivalence). Let (X,£), (X', £’) be two coalgebras.

14



1. (X & x), (X', £, 2’) are behaviourally equivalent iff there are morphisms

(X,€) (X&)

el %

2. Two coalgebras (X, &), (X', &) are behaviourally equivalent iff there are surjective
morphisms

such that f(z) = f/(2).

(X,€) (X&)

SA

The following may be no surprise but should be checked for once nevertheless.

Exercise A.4. Let T'be P or P(A x —) and (X,§), (Y,n) two T-coalgebras. Then z € X
and y € Y are behaviourally equivalent (Definition A.3(1)) iff they are bisimilar in the
usual sense of modal logic or process algebra (Definition B.10).

A.1 Final Coalgebras

An object Z in a category C is called final if for all objects A € C there is a unique arrow
A—Z.

Proposition A.5. Let T be an endofunctor on Set and assume that the final coalgebra
exists in Coalg(T"). Consider two coalgebras (X,€) and (X', &'). Then x € X and 2’ €
X' are identified by the morphisms into the final coalgebra iff (X,€, x), (X', &, 2") are
behaviourally equivalent in the sense of Definition A.3.

Proof. One direction is obvious. For the other use that the dijsoint union of two coalgebras
is a coalgebra and that one can factor a morphism through its image.

The proposition also holds if the final coalgebra exists only outside Coalg(7"). The proof
then is essentially the content of Aczel and Mendler’s final coalgebra theorem [3]. ]

A.2 Cofree Coalgebras

This section contains background material not needed in the present course.

We have seen that final coalgebras play an important role because they classify processes
up to behavioural equivalence. Cofree coalgebras do the same, but allow the environment

15



additional observations called colourings. We first take the time to discuss colourings in
some detail and then explain cofree coalgebras.

Given a coalgebra X 5 TX and a set ‘of colours’ C, a colouring of (X,¢) in C is a
function X —= C. cis simply a marking or labeling of the states. Its import is that we can
use colourings ¢ to make additional observations. Consider eg the Pg,-coalgebra (Y, n,yo)

given by
Yo
(A Y2

Here, the two states yi,ys are behaviourally equivalent for an external observer. But
allowing colourings ¢ : Y — C, C' = {c1, ¢z}, an external observer can distinguish yi, yo by
choosing a colouring with eg ¢(y;) = ¢; and ¢(y2) = cs.

That is, allowing colourings increases the observational power of the environment. If we
want to stay with the paradigm that two elements cannot be distinguished by an external
observer iff these elements cannot be identified by some morphisms, we need to require
morphisms to respect colourings. This gives rise to a new category of coalgebras with
colourings:

Definition A.6 (Coalg(7,C)). Let T : X — X and C € X. Coalg(T, () is the category
having objects

(X 57X, c: X >0C)

where X - TX is a T-coalgebra and ¢ : X — (' an arrow in X. We call these ob-
jects (T, C)-coalgebras and denote them by ((X,€),c) or (X,&,¢). A (T,C)-morphism
f:(X, &)= (X, ¢, ) is a T-morphism (X, &) — (X', ¢’) such that

X f X’
C

The last condition expresses that (7', C')-morphisms preserve colours.

commutes.

We can now define cofree coalgebras

Definition A.7 (Cofree Coalgebras). A (T, C)-coalgebra (Z¢, (¢, ec) is called the cofree
T-coalgebra over C'iff it is final in Coalg(7, C'). We say that Coalg(7") has cofree coalgebras
if cofree coalgebras exists for all C' € X.

16



Usually, we leave ¢ implicit and call (Z¢, () alone the cofree T-coalgebra over C'. In the
following exercise you are asked to unravel the definition of a cofree coalgebra.

Exercise A.8. Show that (Z¢,(c) is cofree over C' iff for all T-coalgebras (X, &) and all
colourings ¢ : X — C there is a unique T-morphism ¢ : (X, §) — (Z¢,(¢) such that

cﬁ
D G -7
N 4
C

commutes.

The diagram above is not ‘well-typed’ in the sense that two arrows are colourings (from
the base category) and another one is a coalgebra morphism. This can be corrected by
introducing the following

Notation A.9 (Forgetful functor). The forgetful functor is the operation U : Coalg(T") —

X mapping a coalgebra to its carrier and a coalgebra morphism f : (X,§) — (X', ) to
f: X - X\

Proposition A.10. Let U : Coalg(T) — X be the forgetful functor. Coalg(T) has cofree
coalgebras iff for each C € X there is a T-coalgebra F'C and a colouring ec : UFC — C
such that for any T-coalgebra A and any colouring ¢ : UA — C there is a unique coalgebra
morphism ¢t : A — FC such that the triangle

UFC FC
2 Uct ct
C UA A
c

commutes.

A.3 Algebras

This section reviews algebras as far as needed to understand the duality to coalgebras.
Some basic familiarity with algebras and equational logic will be helpful, see eg Wechler [40]
for an introduction.

Definition A.11. Given a category X, called the base category, and a functor T : X — X,
a T-algebra (Y,v) is given by an arrow v : TY — Y in X. A morphism between two

17



algebras (Y,v) — (Y',1/) is an arrow f in X such that v/ oTf = fou:

v

TY Y
Tf f
Y ———— Y’
14

The category of T-algebras and morphisms is denoted by Alg(7). The forgetful functor
U : Alg(T) — X maps algebras (Y, v) to the carrier Y and morphisms f : (Y,v) — (Y', /)
to the arrows f: Y — Y.

This notion of algebras for a functor includes algebras defined by operations in the usual
sense. To give examples it is useful to have the following

Notation A.12. A family of functions (f; : Y; — Y)1<i<, can equivalently be written as
a single function

Vit ooty o bl oy
where as before + denotes disjoint unions of sets and [fi, ..., f,] is the function which

applies f; to arguments from Y;. (This equivalence is valid in any category with coproducts.)

Example A.13. Algebras for a signatuer in the standard sense are algebras for a functor.

A T-algebra (I,:) is initial iff it is initial in Alg(T), ie iff for any T-algebra (Y, v) there is
a unique T-morphism

(I,0) = (Y,v).

I consists precisely of all terms that can be formed from the operations in the signature.
For example, the natural numbers are the initial algebra for the functor TY = 1+Y (read
0 as zero and s as successor):

[0, ]

1+N N

To say that (N, [0, s]) is initial is equivalent to the principle of induction. To see that
initiality gives rise to induction, recall that defining a function f : N — Y by induction
means to give a yo € Y such that f(0) =yo and a ¢t : Y — Y such that f(s(n)) =t(f(n)),
that is, to give

Yo, 1]

1+Y Y

18



such that

TS S L N
idy + f f

Ezercise A.14. Check that the diagram above commutes iff f(0) = yo and f(s(n)) = t(f(n))
for all n € N.

A.3.1 Free algebras and equations

Definition A.15 (Free algebra). Let T : X — X and X € X. The free T-algebra over
X is given by an algebra (Ax, ax) and an arrow nx : X — Ax such that for each algebra
(Y,v) and each v : X — Y there is a unique algebra morphism v* : (Ax, ax) — (Y,v) such
that vf o ny = v

We say that Alg(T") has free algebras iff for all X € X there is a free algebra over X.

Remark 1. In the case X = Set we read this as follows: For a set of variables X there is
the term algebra (Ax,ax) which has as a carrier Ay all terms formed from operations in
T and variables in X. nx is the inclusion of variables into terms. v is an assignment of
variables to elements of (Y, ). The condition above now expresses the familiar fact that
any assignment of variables v defines a unique interpretation v* of terms.

Exercise A.16. Compare the definition of free algebras with the characterisation of cofree
coalgebras in Exercise A.8.

We can now say that, in the case X = Set, an equation t = t’ of terms ¢, ¢’ in variables from
X is an element of (¢,t') € Ax x Ax. Satisfaction of equations is then defined as follows.

Definition A.17 (Satisfaction of equations). Let 7" : Set — Set and (Ax,ax) a free T-
algebra over X. Let (Y,v) € Alg(T) and ® C Ay x Ay (ie ¢ is a set of equations in
variables from X'). For an equation (¢,t') € ® and an assignment v : X — Y define

(Yov),v | (¢) iff vi(t) = ¥ (t)
We write (Y, v) = ® and say that (Y, v) satisfies @, or that ® holds in (Y, v), iff (Y,v),v |=
(t,t') for all (¢,t') € ® and all assignments v : X — Y.
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A.4 Duality

We briefly review categorical duality. A category C consists of a class of objects, also
denoted by C, and for all A, B € C of a set of arrows (or morphisms) C(A, B). The dual (or
opposite) category C°P has the same objects and arrows C?(A, B) = C(B, A). We write
A and f°P for A € C and f € C(B, A) to indicate when we think of A as an object in C°P
and of f as an arrow in C°?(A, B). Duality can now be formalised as follows: Let P be a
property of objects or arrows in C. We then say that

an object A (arrow f, respectively) in C has property co-P
iff A°P (f°P respectively) has property P.

For example, an object A is co-initial in C (usually called terminal or final) iff A is initial
in C°?; a morphism f € C(A, B) is co-mono (usually called epi) iff f°P is mono; C is a
co-product A 4+ B iff C°P is a product AP x B°P. Of particular importance for us is

FEzercise A.18. Show that (E, M) is a factorisation system in C iff (M, E) is a factorisation
system in C°P.

The duality principle can also be extended to functors. The dual of a functor F' : C — D
is the functor F°P : C°? — D°P which acts on objects and morphisms as F' does. We can
now state precisely that algebras are dual to coalgebras:

Proposition A.19. Let T : X — X. Alg(T)°" is equivalent to Coalg(T°P).

Proof. The iso maps objects (T'X X )P to X°P 7 op Xop and is the identity on

morphisms. [

Note that the base category X gets dualised as well. To emphasise this trivial but important
point we state an evident corollary to the proposition:

Corollary A.20. Let T : X — X. Then the forgetful functor U : Alg(T) — X is dual to
the forgetful functor U°P : Coalg(T°P) — X°P.

The fact that the base category has to be dualised makes it difficult to exploit the duality
of algebras and coalgebras.

B Modal Logic

(This is Section 4 of [26].) The purpose of this chapter is to introduce modal logic as far
as needed in this course. For more information see e.g. Blackburn, de Rijke, Venema [6]

or Goldblatt [15].
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B.1 Kripke Semantics
B.1.1 Introduction

Modal logic originated with the study of logics comprising modalities as eg ‘necessarily’. In
the beginning of the 20th century a piece of syntax was invented, nowadays mostly written
O, in order to write formulas

O
having the intended meaning that ¢ holds necessarily. A question at that time was to

describe axiomatically the valid formulas involving necessity. Different proposals were
discussed generally including the following two axiom schemes and two rules.

(taut) all propositional tautologies
(dist) O(e =) — Op — Oy
(mp)  from ¢, p — 1) derive
(nec)  from ¢ derive Oy

The interpretation is: propositional tautologies are valid; if necessarily ¢ — 1 and neces-
sarily ¢ then necessarily 1; modus ponens is clear; if ¢ is valid, then necessarily ¢ is valid.
The modal logic consisting of these axioms and rules is today usually denoted by K.

In general, one also proposed additional axiom schemes as eg

(refl) By = ¢
(trans) Op — O0¢

The interpretation is: if ¢ holds necessarily, then it holds indeed; if ¢ holds necessarily
then it is necessary that it holds necessarily.

For a long time it was difficult to judge the value of such axiomatisation because there
was no appropriate semantics of modal logic. This changed in the 1950s with the advent
of possible worlds or Kripke semantics. The idea is to use graphs (X, R), R C X x X,
as models for modal logic and to think of X as a set of possible worlds and of R as an
alternative relation. We then say that a formula holds necessarily in the world z iff it holds
in all possible alternatives:

(X,R,z) EO¢ iff (X,R,y)E¢ forall ywith zRy

A formula holds in (X, R) iff it holds in all worlds z € X and a formula is valid iff it holds
in all (X, R).

Exercise B.1. If you are not familiar with Kripke semantics, then show that (dist) is
valid. Also show that (nec) is correct: if ¢ is valid, then also Og. Show that ¢ — Oy is
not valid.
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B.1.2 Frames and Models

We presented modal logic avoiding any discussion of propositional logic. But there is an
issue: namely whether we should interpret the atomic propositions p € Prop of proposi-
tional logic as variables or as constants. This distinction gives rise to the notions of Kripke
frame and Kripke model.

But first let us be precise about the language of modal logic.

Definition B.2 (Modal language). Given a set of atomic propositions Prop, the set of all
modal formulas ML, sometimes written ML(Prop), is defined inductively by

p € Prop = peML
LeML

o, peEML = p—=pe ML
peML = OpeML

L is falsum. The other boolean operators T, —, A,V can be defined from |, —. The modal
operator < is defined as —0O—.

If we understand atomic propositions as constants we need to extend graphs by interpre-
tations of atomic propositions:

Definition B.3. A Kripke model (X, R, V) consists of a set X , a relation R C X x X
and a valuation V : X — PProp.

Elements of X are called states, (possible) worlds, or points. R is called the accessibil-
ity relation or alternative relation. Elements of Prop are called atomic propositions or
propositional variables.

The idea is that V assigns to x € X the set of atomic propositions holding in z; the
semantics of propositional connectives is as usual and the semantics of O is as we have
seen it. To summarise:

Definition B.4 (Semantics of modal logic). For a Kripke model (X, R,V) and z € X
define:

(X,R,V,z) =D iff peV(x)

(X,R,V,z) £ L

(X,R, Vo) Ee—y iff (X,RV,x)Ep = (X,R,V,x) =1
(X,R,V,z) = Op iff zRy = (X,R,V,y) | ¢ forally e X.
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¢ holds in a model (X, R, V), written (X, R,V) | ¢, iff (X,R,V,z) | ¢ for all z € X.
And ¢ is valid, written = @, iff ¢ holds in all models.

Notation: We write z |= ¢ instead of (X, R,V,z) = ¢ when (X, R,V) is clear from the
context.

We can also take another perspective on atomic propositions. Studying eg the logic of
necessity, one is interested in the formulas valid under all possible interpretations of atomic
propositions. We then think of atomic propositions as propositional variables:

Definition B.5. A Kripke frame (X, R) consists of a set X, and a relation R C X x X.
Models (X, R, V), V : X — PProp, are said to be based on (X, R) and (X, R) is called the
underlying frame of the model.

A frame (X, R) satisfies a formula ¢, or ¢ holds in (X, R), iff all models based on the frame
satisfy :

(X,R)E¢ iff (X,R,V)EypforalV:X — PProp

Note that ¢ holds in all models iff it holds in all frames.

One difference between models and frames is that the theory of a frame is always closed
under substitution, see Exercise B.21. For frames, it is therefore enough to consider axioms
as eg Op — p for some p € Prop; for models, however, we would employ an axiom scheme
Op — ¢ corresponding to the set of axioms {Jp — ¢ : ¢ € ML}. A more essential
difference between models and frames is the topic of the next

Exercise B.6. Let p € Prop.

1. Show that Op — p holds in all reflexive frames (X, R) (ie Vz € X . zRx).

2. Give an example of a non-reflexive model satisfying Oy — ¢ for all ¢ € ML. Is
there a non-reflexive frame satisfying Op — p?

From the point of view of logic, frames seem to be the interesting structures: When we ask
what formulas are valid under all interpretations of propositional variables, it is natural to
consider frames as the semantic structures for modal logic.

On the other hand, from the computer science point of view, models seem to be the natural
structures. Consider a program or algorithm as given by a set of states X and a relation
R, R giving for each state its successors. But program states are not just ‘naked’ elements,
they carry additional information, typically the contents of the memory. This information
can be thought of as being encoded by the valuation V' : X — PProp. That is, thinking
of modal logic as a specification language for transition systems (algorithms, programs),
models are the natural semantic structures of modal logic.
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But even then, the underlying frames (X, R) are of some interest. Often, we are not
interested in arbitrary models (X, R, V) but want to restrict our attention to programs
with special properties, eg deterministic ones. Being deterministic then, is a property of
R, and hence a property of the class of underlying frames. For another typical example,
think of Kripke models (X, R, V') as runs of programs. In this case we may want to require
the underlying frames to have an initial state, to be reflexive, transitive, and perhaps linear.

The next section further develops the exercise above and discusses how modal logic can be
used to describe certain frame classes.

B.1.3 Definability

We say that a class of frames B is defined by a class of formulas ¢ iff B = {(X,R) :
(X, R) = ®}. There are then two questions relating to definability:

e Given a class of formulas, can we characterise the defined class of frames?

e Given a class of frames, are there formulas defining it?

To illustrate the first question, suppose that someone proposes formulas (refl) and (trans)
as axioms for necessity. Understanding then the defined class of frames would make it easier
to judge the proposed axiomatisation (for example, as will be shown below, whether we
accept (trans) depends on whether we think of the alternative relation as being transitive).
To illustrate the second question, recall from the discussion at the end of the previous
section that we might be interested in defining eg the class of deterministic frames or the
class of reflexive, transitive, linear frames.

There exist only partial answers to these questions but many important cases are well-
known. Table 1 gives a typical list of examples.

To check that a frame satisfying the first-order property also satisfies the modal formula
is usually straight forward. If you are not familiar with this, you should do some of the
correspondences in Table 1 as exercises. The converse direction is usually more difficult to
establish. An easy but typical example is the case of (trans):

We show that only transitive frames satisfy Op — OOp. Suppose (X, R) is not transitive,
that is, there are x,y, 2 € X such that xRy A yRz A mxRz. We have to find a valuation V'
such that (X, R,V,x) £ Op — OOp. Choose as extension of p the smallest set such that
(X,R,V,z) = 0p (ie let p € V(w) < xRw). Now, ~zRz guarantees that p ¢ V(z) and
it follows from xRy A yRz that (X, R, V,z) B OOp.

B.1.4 Multimodal Logics

We have seen Kripke semantics for modal logics with one modality. But the basic ideas
of modal logic and possible world semantics can be varied in many ways. We will discuss
here only modal logics with more than one modality.
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Name Axiom

1| (refl) Op —p

2 | (trans) | Op — OOp

3 | (ser) OT

4 | (det) Op — Op

5| (fun) Op < Op

6 | (dir) SOp — Op

Name Conditions on R

1 | reflexive Vx(zRx)
2 | transitive VaVyVz(xRy N yRz — xRz)
3 | serial VaIy(xRy)
4 | deterministic VaVyVz(zRy AN xRz — y = z)
5 | functional Va3ly(zRy)
6 | directed VaVyVz(z Ry A xRz — 32/ (yRx' A zRx'))

Table 1: Modal Formulas and First-Order Correspondences

A multimodal logic has modalities O, for all a € A for some set A. That is, the last clause
of Definition B.2 is replaced by

peML,acA = O,pe ML

One should now write ML(Prop, A) but if no confusion can arise we continue to use ML.

A frame (X, (Ry)aca) for a multimodal logic has a relation R, for each modality O,. A
model (X, (R,)qeca, V') has additionally a valuation of atomic propositions.

Example B.7 (Hennessy-Milner logic). Consider a multimodal logic without atomic propo-
sitions and with modalities O,, a € A, where we think of A as a set of actions and of O,p
as ‘p holds after a’. A Kripke model is then a transition system (X, (Ry)eca) (remember
that there are no atomic propositions and hence no valuation). It is customary to write
x % y for R, y and [a] for O,.

Example B.8 (Multi-agent systems). Consider a multimodal logic with modalities O,,
a € A, where we think of A as a set of agents and of O, as ‘agent a knows ¢’. Atomic
propositions describe the facts agents can know. A Kripke model (X, (Ry)qea, V) can be
understood as follows. X is a set of possible worlds and V' describes the facts holding in
each world. =R,y means that agent a considers y as an alternative world for z. x = O,
means that ¢ holds in all worlds which are considered as alternative worlds by agent a, ie
a knows ¢.
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Example B.9 (Temporal logic). Consider a multimodal logic with two modalities O, O
where we think of Oy as ‘in the next state holds ¢’ and of Oy as ‘now and always in the
future holds ¢’. A particularly interesting Kripke frame for this logic is (N, S, <) where
m S n iff n = m + 1. Models based on this frame can be considered as runs of programs
and the modal logic defined by this frame, linear temporal logic, plays an important role
in the verification of programs, see eg [23, 28, 12, 35].

B.2 Bisimulation

Having seen Kripke frames and models, it is natural to ask what would be an appropriate
notion of morphism for these structures. But instead of defining morphisms right away, we
look first at relations between models. In particular, given two (multimodal) Kripke models
(X, (Ra)aca, V), (X', (R.)aca, V'), we are interested in describing relations B € X x X'
such that

rBr = (zEp & 2 Eo).

A careful analysis of the definition of x = ¢ leads to the following notion of bisimulation.

Definition B.10 (Bisimulation). Given two Kripke models (X, (Ra)aca, V), (X, (R.)aca, V')
we call B C X x X’ a bisimulation between the models iff z B 2’ implies that

V(z) =V ()
vy = 3. Sy &yBy
r—'y = .-y &yBy
(writing — for R, and R!). z, 2’ are called bisimilar iff there is a bisimulation relating

them. Bisimulations for frames can be obtained as a special case by ignoring the clause
concerning the valuations V, V".

Examples of (non-)bisimilarity can be found in the exercises. For us, the following is
essential and an exercise that should not be missed.

Exercise B.11. Show by induction on the structure of formulas that given two models
(X, (Ra)aca, V), (X', (R)aca, V') then for all x € X, 2/ € X’ it holds: z,2’ bisimilar
implies that = = ¢ < 2 = ¢ for all modal formulas .

We now define morphisms as functional bisimulations.

Definition B.12. Given two Kripke models/frames (X,...), (X’,...) a morphism f :
(X,...) = (X',...) is a function f : X — X' such that its graph {(z, f(z)) : 2 € X} is a
bisimulation.
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These morphisms are usually called p-morphisms or bounded morphisms. The following
observation—which should by now be no surprise—justifies to call them simply morphisms.

Proposition B.13. The morphisms of Kripke models/frames are precisely the coalgebra
morphisms.

Proof. (Monomodal) Kripke frames are P-coalgebras and their morphisms were shown to
be functional bisimulations in Proposition A.2 (check this). Kripke models are (P x PProp)-
coalgebras; multimodal Kripke frames are P(A x —)-coalgebras and multimodal Kripke
models (P(A x —) x PProp)-coalgebras. These cases are only slight variations. ]

Another way to phrase the relationship between coalgebras and Kripke models/frames is
the following:

Proposition B.14. Let (X,...), (X',...) be two Kripke models/frames. Then z € X,
' € X' are bisimilar (in the sense of modal logic) iff they are behaviourally equivalent (in
the coalgebraic sense).

The relationship between modal formulas and morphisms is summarised by the following
two classical results. We need some standard terminology: a formula ¢ is preserved under
quotients if A — A’ surjective and A = ¢ implies A’ = ¢; ¢ is preserved under submod-
els/subframes if A" — A injective and A |= ¢ implies A’ = ¢; ¢ is preserved under disjoint
unions (or coproducts) if A; = ¢ for all i € I implies [[; A; = ¢; ¢ is preserved under
domains of quotients if A’ — A surjective and A = ¢ implies A" = .

Proposition B.15. Wrt Kripke models, modal formulas are preserved under quotients,
submodels, disjoint unions, and domains of quotients.

Proposition B.16. Wrt Kripke frames, modal formulas are preserved under quotients,
subframes, and disjoint unions.

The proof of this propositions is an easy corollary to Exercise B.11.

B.3 The Logic of Bisimulation

The aim of this section is to substantiate the claim that modal logic is the logic of bisim-
ulation. We have seen in Exercise B.11 that for two models (X, R, V), (X', R', V'), and
reX,reX

z, o' bisimilar = VoeML:zEp & o' E o,

that is, bisimilarity implies modal equivalence. Unfortunately, the converse does not hold.
Figure 1 shows an example where x has for each n € N a branch of length n, and 2’ has
additionally an infinite branch. That x and 2’ are not bisimilar is not difficult to see:
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Figure 1: Modally equivalent but not bisimilar models

Exercise B.17. Consider the models in Figure 1 (assume that all states satisfy the same
atomic propositions). Show that z, z" are not bisimilar.

To show that x and 2’ are modally equivalent is not difficult either but requires a bit more
work, see Exercise B.25.

The example suggests (at least after having done Exercise B.25) that the failure of modal
logic to characterise states up to bisimilarity is related to the facts that

e a single modal formula can not express enough about an infinite branch, and that

e a transition system may have infinite branching.

And indeed, adjusting either of the two points above results in a perfect match of bisimi-
larity and modal expressiveness. This is the contents of the following two theorems.

The first idea is to increase expressiveness of modal logic using infinitary modal logic ML .
ML is defined as ML with the additional clause

dbC ML, = NANPe ML,

and stipulating zE AP © Voe ®:z =

Theorem B.18. For each model (X, R, V) and each x € X there is a formula ¢, € ML
such that for all models (X', R',V') and all 2’ € X'

=, iff x2 bisimilar.

The other idea is to restrict attention to models with finite branching.

Theorem B.19 (Hennessy and Milner). Let K be the class of image-finite Kripke models,
ie for all (X, R,V) and all x € X the set {y : © R y} is finite. Then for all (X, R,V),
(X',R,V"Yin K and allx € X, 2’ € X'

Voe ML :zlEp & ' Eo = x,2 bisimilar.
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From the point of view of classical first-order logic, however, the most satisfactory expla-
nation of the relationship of modal logic to bisimulation is the following characterisation of
modal logic as the bisimulation invariant fragment of first-order logic: A first-order formula
is invariant under bisimulations iff it is equivalent to a modal formula.

To make this precise we note that a Kripke model (X, R, V') can also be understood as a
first-order model with one binary relation R and one unary predicate P for each atomic
proposition p € Prop. Let us call FL the corresponding first-order language (containing one
relation symbol and for each atomic proposition a unary predicate symbol). The definition
of (X,R,V,z) E ¢ in Section B.1.2 can now be read as a translation (—)* : ML — FL of
modal formulas in first-order formulas with one free variable z:

p" = P(z)

1 =1

(o =) =" = ¢*

(Bp)* =Vy : 2Ry — ¢*[y/x]

where y is a variable not occurring free in ¢* (and [y/z]| denotes substitution of y for z).

Theorem B.20 (van Benthem). A first-order formula ¢ € FL is invariant under bisim-
ulation iff it is logically equivalent to a translation ¢* of a modal formula ¢ € ML.

B.4 Exercises

Exercise B.21. Show that the theory of a frame is closed under substitution. That is,
for ¢, € ML and p € Prop it holds that (X, R) E ¢ = (X, R) E ¢[t/p] (where [¢)/p]
denotes substitution of ¢ for p).

Exercise B.22 (Examples of bisimilarities). Assume a monomodal language. Show that
in the models given below the states x and 2’ are bisimilar.

1. The relational structure of the models is depicted below. For the valuations assume
that V(y) = V(z) = V'(¥) and V(z) = V'(2).

2. For the following models assume that all states have the same valuation.
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Exercise B.23 (A non-example of bisimilarity). Assume a multimodal language with three
modalities A = {a, b, c} and no atomic propositions. Consider the two models below.

1. Show that x, 2’ are not bisimilar.

2. Give modal formulas that distinguish z and a’.

Note that both models show the same behaviour {ab, ac} if only traces are considered.

Exercise B.24 (Bisimilarity of frames). For frames bisimilarity does not imply modal
equivalence. First note that x, 2’ in the the following two frames are bisimilar.

Now, show

lLLoEe = 2=y

2 EFEerarkEp

Exercise B.25 (Modal equivalence does not imply bisimilarity). Denote by (X, R, V)
and (X', R', V') the two models of Figure 1. The aim is to show that x and z’ are modally
equivalent. We need two definitions.

The depth of a modal formula counts the number of nested boxes, ie depth(L) = depth(p) =
0, depth(p — v¥) = max(depth(p), depth(v)), depth(Op) = depth(p) + 1.

Denote by Cut(x,n) the model which is obtained from (X, R, V') by deleting all states
which are not reachable from x in n or fewer than n steps. For example Cut(z,0) consists
just of x. Similarly define Cut'(z/,n).

1. Show that depth(y) < n implies that (Cut(z,n),z) = ¢ < (X,R,V,z) |E ¢ and
that (Cut'(2/,n),2") E¢ & (X, R,V 2) E .

2. Conclude that for all modal formulas (X, R, V,z) E ¢ < (X',R,V',2') = ¢.
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B.5 Notes

For background on modal logic the reader is referred to Chapter 2 and 3 of Blackburn,
de Rijke, Venema [6]. We just note that bisimulation goes back, in its functional form,
to Segerberg [34], and in its relational form to van Benthem [37]; Theorem B.18 can be
found in Barwise and Moss [5], Theorem B.19 is due to Hennessy and Milner [17], and
Theorem B.20 to van Benthem [37, 38].

C Proofs and Answers to Exercises

Theorem 2.7 The categories Fin°® and BAg, are equivalent.

Proof. We have to show that e : A — PSA is an isomorphism of Boolean algebras for
all finite A € BA. First, e is a homomorphism because e is induced by homming into a
dualising object.

e injective: We have to show that if a £ b, then there is a point p : A — 2 such that pa = 1
and pb = 0. Define pc =1 for all ¢ > a. Check that p is a BA-morphism.

e surjective: Let p: A — 2 be a BA-morphism. Show that there is a € A such that pb =1
iff b > a and that a is an atom. Conclude that p = a. O
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