
Gerard Holzmann

Nimble Research

gholzmann@acm.org

2

ISO 26262: highly recommended
EN 50128: highly recommended
IEC 61508: highly recommended
DO 178C: required

as opposed to testing only expected behavior,
or randomly poking the code with inputs

https://en.wikipedia.org/wiki/ISO_26262
https://en.wikipedia.org/wiki/IEC_61508
https://en.wikipedia.org/wiki/DO-178C

1. How good is Software Testing with
100% MC/DC Coverage ?

2. Is Randomized Testing (Fuzz testing)
better ?

3. Does it change if we Remember
Nodes we’ve visited ? (using Perfect
Recall)

4. Can we use Parallelism to speed
things up if all this starts taking too
much time ?

“Whatever can happen will happen if we make trials enough.”

Augustus De Morgan (1866)

3

int *p;

void

fct(int x, int y)

{

if (x)

{ p = &x;

}

if (y)

{ *p = y;

}

}

void

test_main(void)

{

fct(0,0);

fct(1,1);

}

this test achieves 100% MC/DC

coverage, yet it misses a serious bug

that could be revealed with a third test:

foo(0,1)

the MC/DC test covered just 50% of the

paths in the control-flow graph

4

void

fct(int x, int y)

{ int i, a[4];

for (i = 0; i < x+y; i++)

{ a[i] = i;

}

}

void

test_main(void)

{

fct(1,1);

}

this single test achieves 100% MC/DC

coverage, but misses the array indexing

bug that can be revealed with, for

instance, foo(1,3)

this 1 test covers just 1 of 231

theoretically possible execution

paths

5

int x, y, r;

int *p, *q, *z;

int **a;

thread_1() // initialize

{

p = &x;

q = &y;

z = &r;

}

thread_2() // swap *p and *q

{

r = *p;

*p = *q;

*q = r;

}

thread_3() // access z via a and p

{

a = &p;

*a = z;

**a = 12;

}

So maybe MC/DC coverage is not such a great metric.

Can we do better with Fuzz Testing?

6

▪ 83 nodes are reachable from S1

▪ How many random tests would we
have to do to be sure that all 83
nodes are visited at least once?

▪ Hint: a first randomly chosen test
path shown here visits 27 of the 83
nodes, or 32.5% of the total.

7

N

nr of visited unique percent runtime

tests states states coverage

10 70 5 6% 1 second

100 439 15 18% 3 seconds

1,000 8,804 60 72% 1 minute

10,000 79,582 75 90% 6 minutes

20,000 166,066 81 97% 12 minutes

30,000 243,978 82 99% 17 minutes

100,000 834,707 83 100% 52 minutes

8

the x-axis (#tests) is a logscale

#states visited

%coverage

nr of visited unique percent time

tests states states coverage (sec)

10 153 68 9% 1

100 1,340 291 37% 6

1,000 14,338 631 81% 124

10,000 139,692 754 96% 640

100,000 1,408,469 775 99% 93120

nr of random tests

so: random test suites are also not great:

they incur increasing amounts of duplicate work,

making it hard to reach 100% coverage

9

(25.9 hrs)

a standard breadth-first search (BFS) in

either graph visits all reachable nodes and

explores all execution paths, without

duplication…

all in a fraction of a second

nr of visited unique percent

tests states states coverage

1 83 83 100%

nr of visited unique percent

tests states states coverage

1 781 781 100%

100 nodes

1000 nodes

10

<1s

<1s

▪ What if storing all reachable states
(for a perfect recall of states) takes
too much memory?

▪ The good news: it does not have to be
perfect

▪ the recall is only used to reduce the
amount of duplicate work

▪ It can already suffice to store just a
hash-signature of each state

▪ in a fixed size Bloom filter

11

(a bitmap) (states)

(hash)

(low probability)

Burton Bloom, “Space/time trade-offs in

hash coding with allowable errors”

CACM, July 1970, Vol. 13, Issue 7.

▪ for large problems, a full DFS
or BFS search could be time
consuming

▪ we can parallelize the tests
if we randomly split up the
search space: (re-enter
fuzzing or randomization)

▪ i’ve called this method: swarm
testing

method:

(1) N search engines (hundreds, thousands, millions)

(2) with a small memory bound for each search (fast!)

(3) randomize the DFS within each search engine

(4) achieves very high state coverage for large N

12

http://www.geocities.com/xiv_skull/xiv_skull.gif

The MC/DC Unit Tests explored

3 orders of magnitude fewer

states than either Random or BFS

BFS explored the largest number of paths

NVFS REQUIRED UNIT TESTS

13

Statement Coverage Achieved

(the requirement was >95%)

the number of unique system states

reached in all NVFS unit tests combined:

35,796 unique states (+ 1,175 duplicates)
and ~100 distinct test execution paths

After 5 hours of RANDOM TESTING

398M states reached, 50K paths

measured fanout of states

After 5 hours of BFS SEARCH (TWR)

745M states reached, >>50M paths

measured fanout of states

14

int

function(int arg)

{ int result = 0;

switch (p) {

case 1: result = 5; break;

case 2: result = 3; break;

….

case 9: result = 2020; break;

default: break;

}

return result;

}

int table[10] = { 0, 5, 3, … , 2020 };

int

function(int arg)

{ int result = 0;

if (arg >= 1 && arg <= 9)

{ result = table[arg];

}

return result;

}

10 execution paths

(cyclomatic complexity 10)

2 execution paths

(cyclomatic complexity 2)

an example of data driven code

these two functions have

identical functionality

FORM L SOFTWARE N LYSIS

p p

• p is expressed in (temporal) logic

• S captures (possibly concurrent) task

behavior, using partial order reduction

theory to reduce the search space

if the subset p S is empty:

we prove that p holds in S

if non-empty:

the subset contains at least

one execution that proves that

p can be violated in S

given system S and a requirement p

compute: p S S

p S

15 13

HOW WE TESTED THE MSL ROVER’S

FLASH-FILE SYSTEM SOFTWARE

abstract

state 4: abstraction
functions

do
:: mkdir
:: rmdir
:: open
:: write
:: unlink
:: ..
…
od

1: randomized

test-driver

(simulation-like)

a reference

POSIX standard

file system

MSL

flash file system

flight C code

concrete

state

3: integrity

checks

2: optimized

state-space

exploration

random fault injection

(e.g., loss of power)

14

file

system

calls

▪ for Testing with Recall:

▪ the application must be instrumented
so that its state can be captured (hashed)

▪ by doing so we can:

▪ increase test coverage (dramatically)

▪ and perform stronger checks:

▪ use full linear temporal logic model
checking

▪ use cloud computing techniques to speed
up the testing

17

"A random element is rather useful when we
are searching for a solution of some problem.“

A.M. Turing, "Computing machinery and intelligence," Oxford University Press,

MIND (the Journal of the Mind Association), Vol. LIX, no. 236, pp. 433-60, (1950).

18

