Gerard Holzmann

Nimble Research

gholzmann@acm.org



MC/DC TESTING
OF CRITICAL SOFTWARE

ISO 26262: highly recommended

. highly recommended
IEC 61508: highly recommended
DO 178C: required

Modified condition/decision coverage — Every point of entry and exit in the program has

been mvoked at least once, every condition in a decision in the program has taken all
possible outcomes at least once| every decision in the program has taken all possible

outcomes at least once, and each condition in a decision has been shown to independently
affect that decision's outcome. A condition 1s shown to independently afifect a decision's

outcome by: (1) varying just that condition while holding fixed all other possible
conditions, or (2) varymng just that condition while holding fixed all other possible

conditions that could affect

as opposed to testing only expected behavior,
or randomly poking the code with inputs



https://en.wikipedia.org/wiki/ISO_26262
https://en.wikipedia.org/wiki/IEC_61508
https://en.wikipedia.org/wiki/DO-178C

1.

2.

“Whatever can happen will happen if we make trials enough.”

QUESTIONS

How good is Software Testing with
100% MC/DC Coverage ?

Is Randomized Testing (Fuzz testing)
better ?

Does it change if we Remember
Nodes we’ve visited ? (using Perfect
Recall)

Can we use Parallelism to speed
things up if all this starts taking too
much time ?

Augustus De Morgan (1866)




SOME EXAMPLES

1: TESTING CONDITIONAL CODE

int *p;

void

{
if (x)
{ p
}
if (y)
{ *p
}

}

fct(int x, int y)

&X;

void
test main(void)
{
fct(0,0);
fct(1,1);
}

this test achieves 100% MC/DC
coverage, yet it misses a serious bug
that could be revealed with a third test:
foo(0,1)

the MC/DC test covered just 50% of the
paths in the control-flow graph

()



2: TESTING CODE LOOPS

void
fct(int x, int y)
{ int i, al[4];

for (1 = 0; i < x+y; i++)
{ a[i] = 1i;

}

void
test main(void)
{

fct(1,1);

}

this single test achieves 100% MC/DC
coverage, but misses the array indexing
bug that can be revealed with, for
instance, foo(1,3)

this 1 test covers just 1 of 23!

theoretically possible execution
paths

)



3: TESTING MULTI-THREADED CODE

int S0 maybe MC/DC coverage is not such a great metric.
int *] Can we do better with Fuzz Testing?

int **37 ~ A1z AL
t/ /' i //I

thread 1() // initialize C‘) 17 /‘/ 4
{ AT 7/

P = &X; / / /Ll y

q = &y; 717 AW

Z = &r; o e
} . put any 1 of thes

0
(0)
thread 2() // swap *p and *q| |thread 3() // acces reaches 100%

r = *p; a = &p;
*p = *q; *a = z;
*q = r; **a = 12;




AN EXAMPLE

= 83 nodes are reachable from S1

= How many random tests would we
have to do to be sure that all 83
nodes are visited at least once?

= Hint: a first randomly chosen test
path shown here visits 27 of the 83
nodes, or 32.5% of the total.




N RANDOM TESTS OF 500 STEPS
# STATES VISITED VS UNIQUE STATES

nr of visited unique percent runtime Cumulative Coverage of Random Test Runs
tests states states coverage @/a
s
10 70 1 second Hstates visited _@—
100 439 3 seconds
1,000 8,804 1 minute
%coverage
10,000 79,582 6 minutes & e 2
20,000 166,066 12 minutes
30,000 243,978 17 minutes
100 , 000 834 , -70-7 52 minutes 10 100 . 1[:)00 ) : 1'000: pZOOOOC 30000 100000

the x-axis (#tests) is a logscale

e



SAME TEST FOR A LARGER GRAPH
1000 NODES, 781 REACHABLE

nr of visited unique percent time
tests states states coverage (sec)
10 153 68 9% 1
100 1,340 291 37% 6
1,000 14,338 631 81% 124
10,000 139,692 754 96% 640
100,000 1,408,469 775 99% 93120
(25.9 hrs)

so: random test suites are also not great:
they incur increasing amounts of duplicate work,
making it hard to reach 100% coverage —#states —coverage

—— nr of random tests

()




WHAT IF WE REMEMBERED WHERE WE’'VE BEEN:
BY USING STANDARD GRAPH SEARCH ALGORITHMS (DFS/BFS)

100 nodes & nr of visited unique percent
<> @ G tests states states coverage
U S 1 83 83 100%  <ls
CYRNCOICOENC) oo G CORNCHICY,
OECOICONNCONCIICORCIESCONEC)) SXCD, DISICY,

@ @ @ @ @ D B @ @IS G @D 1 G5 @D (5D @D (T a standard breadth-first search (BFS) in

G OEFEEOHEEE® either graph visits all reachable nodes and
w e PPPE explores all execution paths, without
duplication...

all in a fraction of a second

nr of visited unique percent
tests states states coverage
1 781 781 100% <ls

©



THERE’'S MORE...

Hash

functions Keys Bloom Filter ltems to test

= What if storing all reachable states
(for a perfect recall of states) takes
too much memory?

True positive

True negative

= The good news: it does not have to be
perfect

= the recall is only used to reduce the
amount of duplicate work

False positive

(low probability)

« It can already suffice to store just a (a bitmap)  (states)

hash-signature of each state
Burton Bloom, “Space/time trade-offs in

= In a fixed size Bloom filter hash coding with allowable errors”
CACM, July 1970, Vol. 13, Issue 1.




CAN WE EXPLOIT PARALLELISM
TO CREATE VERY FAST BLOOM FILTER TESTS»

= for large problems, a full DFS
or BFS search could be time
consuming

= we can parallelize the tests
if we randomly split up the
search space: (re-enter
fuzzing or randomization)

= I've called this method: swanmthod:
testing (1) N search engines (hundreds, thousands, millions)
(2) with a small memory bound for each search (fast!)
(3) randomize the DFS within each search engine
(4) achieves very high state coverage for large N

e


http://www.geocities.com/xiv_skull/xiv_skull.gif

) ILABORATORW
— = NVFS REQUIRED UNIT TESTS

Statement Coverage Achieved
(the requirement was >95%)

100.00
90.00
80.00
70.00
60.00
50.00
40.00
30.00
20.00
10,00
0.00

99.20 97.66 9750  100.00

9145
63.08 I I
G

x |;_. .-' '\&%
6{@ 4% ; 6{@ 6{(" -'SF, ’

*"fﬁ

the number of unique system states
reached in all NVFS unit tests combined:

35,796 unique states (+ 1,175 duplicates)
and ~100 distinct test execution paths

After 5 hours of RANDOM TESTING

+

1E+09
100000000 7
10000000

398M states reached, 50K paths

1000000 7

Number 100000 -
of Nodes 10000 -
1000

100 A

10 7

1 4

measured fanout of states |

o 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 15 20 21 23 64

MNumber of Successors

After 5 hours of BFS SEARCH (TWR)

1E+10

745M states reached, >>50M paths

100000000 -

Number
of Nodes 1000000 - I

- [ measured fanoutotstates ||

100 4 easured fanout of states
Illllllllllllllll

1 A

i 2 3 4 5 6 7 B8 9 10 11 12 13 14 15 16 17 18 19 20 21 23 64

Mumber of Successors

The MC/DC Unit Tests explored

3 orders of magnitude fewer

states than either Random or BFS

BFS explored the largest number of paths

e



BUT |

NNOTE: IT'S NOT JUST ABOUT

EXPLORING ALL EXECUTION PATHS...

10 execution paths
(cyclomatic complexity 10)

int

{

function (int argq) \\\\\

int result = 0;

switch (p) {
case 1: result
case 2: result

= 5, break;

= 3; break;
case 9: result = 2020; break;
default: Dbreak;

}

return result;

these two functions have
identical functionality

int table[10] = { O, 5, 3, .. , 2020 }?\\\

int
function(int arg)
{ int result = 0;

if (arg >= 1 && arg <= 9)
{ result = tablelarg]:
}

return result;

2 execution paths
(cyclomatic complexity 2)
an example of data driven code

e



FORMAL SOFTWARE ANALYSIS **

given system S and a requirement p

compute:=p NS S
pu P P —p

* pis expressed in (temporal) logic
* S captures (possibly concurrent) task
behavior, using partial order reduction
theory to reduce the search space —pnS
if the subset —p n S is empty:
we prove that p holds in S
if non-empty:
the subset contains at least
one execution that proves that
p can be violated in S

©




HOW WE TESTED THE MSL ROVER’s
FLASH-FILE SYSTEM SOFTWARE

random fault injection
(e.g., loss of power) 2: optimized a reference
~ State_space > POSIX Standard
do \\\ exploration file system
:: mkdir A w
file :: rmdir N _ _
system ::open — SB’\Lned ML 3: |ntegr|ty
calls :: write checks
:: unlink
MSL
» flash file system
od 4 flight C code
1: randomized
test-driver 1

(simulation-like)
abstract |« concrete
Sstate 4: abstraction state

functions




SYNOPSIS

= for Testing with Recall:

= the application must be instrumented
so that its state can be captured (hashed)

= by doing so we can:
= Increase test coverage (dramatically)

= and perform stronger checks:

= use full linear temporal logic model
checking

= use cloud computing techniques to speed
up the testing

LA
N

Spin

checked

(=)



THANK YOU

"A random element is rather useful when we
are searching for a solution of some problem.*

A.M.Turing, "Computing machinery and intelligence," Oxford University Press,
MIND (the Journal of the Mind Association), Vol. LIX, no. 236, pp. 433-60, (1950).

(o

o



