Moss’s Coalgebraic Logic

Contents

Moss’s Coalgebraic Logic#

(under construction)

Given a coalgebra \(\gamma:X\to TX\) and the set of all formulas \(\Phi\) and \(\theta\in T\Phi\), we define the semantics of the formla \(\nabla\theta\) via

\[x\Vdash \nabla\theta \quad\Longleftrightarrow\quad \gamma(x)\, \widehat T(\Vdash)\, \theta \]

where \(\widehat T\) is the relation lifting of \(T\).

Example: If \(T=\mathcal P\) the powerset functor and \(R\subseteq X\times Y\), then the relation lifting \(\widehat{\mathcal P}R\subseteq \mathcal PX\times\mathcal PY\) is given as follows.

\[(A,B)\in\widehat{\mathcal P}R \quad\Leftrightarrow\quad \forall x\in A.\exists y\in B. (x,y)\in R \quad \&\quad \forall y\in B.\exists x\in A. (x,y)\in R \]

Instantiating \(A=\gamma(x)\) and \(B=\theta\) we get

\[\gamma(x)\, \widehat{\mathcal P}(\Vdash)\, \theta \quad\Leftrightarrow\quad \forall y\in\gamma(x).\exists \phi\in\theta. y\Vdash\phi \quad \&\quad \forall\phi\in\theta.\exists y\in \gamma(x). y\Vdash\theta \]

With \(\theta = \{\phi_1,\ldots\phi_n\}\) we can now rewrite this using \(\Box\) and \(\Diamond\) to obtain

\[\nabla\theta = \Box(\phi_1\vee\ldots\phi_n)\wedge\Diamond\phi_1\wedge\ldots\Diamond\phi_n\]

Definition: The syntax of Moss’s logic [1] is given by the functor

\[FTU:{\sf BA}\to {\sf BA}\]

and the semantics is given for finite sets \(X\) by the BA-morphism \(FTUPX \to PTX\) which is the adjoint transpose of the function \(TUP\stackrel\rho\longrightarrow UPTX\) that arises from applying the relation lifting of \(T\) to the elementship relation.[2]

(20)#\[\begin{align} X\times 2^X & \stackrel\in\longrightarrow 2\\ TX\times T(2^X) & \stackrel{\widehat T\in}\longrightarrow 2\\ T(2^X) &\to 2^{TX} \end{align}\]

References#